
M FÃ;tima Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5832297/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodegradation of the veterinary antibiotics enrofloxacin and ceftiofur and associated microbial community dynamics. Science of the Total Environment, 2017, 581-582, 359-368.	8.0	130
2	4-Chlorophenol degradation by a bacterial consortium: development of a granular activated carbon biofilm reactor. Applied Microbiology and Biotechnology, 1999, 52, 722-729.	3.6	106
3	The Essentials of Marine Biotechnology. Frontiers in Marine Science, 2021, 8, .	2.5	75
4	2-Fluorophenol degradation by aerobic granular sludge in a sequencing batch reactor. Water Research, 2011, 45, 6745-6752.	11.3	67
5	Biodegradation of oxytetracycline and enrofloxacin by autochthonous microbial communities from estuarine sediments. Science of the Total Environment, 2019, 648, 962-972.	8.0	65
6	Isolation and properties of a pure bacterial strain capable of fluorobenzene degradation as sole carbon and energy source. Environmental Microbiology, 2005, 7, 294-298.	3.8	63
7	Isolation and Initial Characterization of a Bacterial Consortium Able To Mineralize Fluorobenzene. Applied and Environmental Microbiology, 2002, 68, 102-105.	3.1	59
8	Actinobacteria Isolated From Laminaria ochroleuca: A Source of New Bioactive Compounds. Frontiers in Microbiology, 2019, 10, 683.	3.5	54
9	Pharmaceutical Compounds in Aquatic Environments—Occurrence, Fate and Bioremediation Prospective. Toxics, 2021, 9, 257.	3.7	52
10	Natural production of fluorinated compounds and biotechnological prospects of the fluorinase enzyme. Critical Reviews in Biotechnology, 2017, 37, 880-897.	9.0	50
11	Actinobacteria and Cyanobacteria Diversity in Terrestrial Antarctic Microenvironments Evaluated by Culture-Dependent and Independent Methods. Frontiers in Microbiology, 2019, 10, 1018.	3.5	50
12	Increased protein content of chickpea (<i>Cicer arietinum</i> L.) inoculated with arbuscular mycorrhizal fungi and nitrogenâ€fixing bacteria under water deficit conditions. Journal of the Science of Food and Agriculture, 2017, 97, 4379-4385.	3.5	43
13	Chryseobacterium palustre sp. nov. and Chryseobacterium humi sp. nov., isolated from industrially contaminated sediments. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 402-407.	1.7	42
14	A GAC biofilm reactor for the continuous degradation of 4-chlorophenol: treatment efficiency and microbial analysis. Applied Microbiology and Biotechnology, 2001, 57, 419-426.	3.6	41
15	Degradation of Fluorobenzene by Rhizobiales Strain F11 via ortho Cleavage of 4-Fluorocatechol and Catechol. Applied and Environmental Microbiology, 2006, 72, 7413-7417.	3.1	40
16	Seed coating with inocula of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria for nutritional enhancement of maize under different fertilisation regimes. Archives of Agronomy and Soil Science, 2019, 65, 31-43.	2.6	40
17	Valorization of Marine Waste: Use of Industrial By-Products and Beach Wrack Towards the Production of High Added-Value Products. Frontiers in Marine Science, 2021, 8, .	2.5	35
18	Adsorption of fluorobenzene onto granular activated carbon: Isotherm and bioavailability studies. Bioresource Technology, 2007, 98, 3424-3430.	9.6	34

M FÃitima Carvalho

#	Article	IF	CITATIONS
19	Isolation and characterization of a Rhodococcus strain able to degrade 2-fluorophenol. Applied Microbiology and Biotechnology, 2012, 95, 511-520.	3.6	33
20	Microbial degradation of two highly persistent fluorinated fungicides - epoxiconazole and fludioxonil. Journal of Hazardous Materials, 2020, 394, 122545.	12.4	32
21	In situ corrosion control in industrial water systems. Biodegradation, 2000, 11, 441-448.	3.0	31
22	Bacterial degradation of moxifloxacin in the presence of acetate as a bulk substrate. Journal of Environmental Management, 2016, 168, 219-228.	7.8	30
23	Labrys portucalensis sp. nov., a fluorobenzene-degrading bacterium isolated from an industrially contaminated sediment in northern Portugal. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 692-698.	1.7	29
24	Degradation of difluorobenzenes by the wild strain Labrys portucalensis. Biodegradation, 2012, 23, 653-662.	3.0	29
25	Biodegradation of fluoroanilines by the wild strain Labrys portucalensis. International Biodeterioration and Biodegradation, 2013, 80, 10-15.	3.9	29
26	Biodegradation of mono-, di- and trifluoroacetate by microbial cultures with different origins. New Biotechnology, 2018, 43, 23-29.	4.4	29
27	Revisiting pesticide pollution: The case of fluorinated pesticides. Environmental Pollution, 2022, 292, 118315.	7.5	29
28	Improved grain yield of cowpea (Vigna unguiculata) under water deficit after inoculation with Bradyrhizobium elkanii and Rhizophagus irregularis. Crop and Pasture Science, 2017, 68, 1052.	1.5	28
29	Effect of the metals iron, copper and silver on fluorobenzene biodegradation by Labrys portucalensis. Biodegradation, 2013, 24, 245-255.	3.0	27
30	SARS-CoV-2 RNA detected in urban wastewater from Porto, Portugal: Method optimization and continuous 25-week monitoring. Science of the Total Environment, 2021, 792, 148467.	8.0	25
31	Bioaugmentation of a rotating biological contactor for degradation of 2-fluorophenol. Bioresource Technology, 2011, 102, 9300-9303.	9.6	24
32	Arbuscular mycorrhizal fungi are an alternative to the application of chemical fertilizer in the production of the medicinal and aromatic plant <i>Coriandrum sativum</i> L Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 320-328.	2.3	23
33	A New Network for the Advancement of Marine Biotechnology in Europe and Beyond. Frontiers in Marine Science, 2020, 7, .	2.5	22
34	Microbial degradation of 17β -estradiol and 17α -ethinylestradiol followed by a validated HPLC-DAD method. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2010, 45, 265-273.	1.5	21
35	Diversity and Bioactive Potential of Actinobacteria Isolated from a Coastal Marine Sediment in Northern Portugal. Microorganisms, 2020, 8, 1691.	3.6	20
36	Harnessing the Potential of Native Microbial Communities for Bioremediation of Oil Spills in the Iberian Peninsula NW Coast. Frontiers in Microbiology, 2021, 12, 633659.	3.5	20

M FÃitima Carvalho

#	Article	IF	CITATIONS
37	Bioremediation of bezafibrate and paroxetine by microorganisms from estuarine sediment and activated sludge of an associated wastewater treatment plant. Science of the Total Environment, 2019, 655, 796-806.	8.0	19
38	Genetic, phenotypic and functional variation within a Glomus geosporum isolate cultivated with or without the stress of a highly alkaline anthropogenic sediment. Applied Soil Ecology, 2010, 45, 39-48.	4.3	18
39	Co-metabolic degradation of chlorobenzene by the fluorobenzene degrading wild strain Labrys portucalensis. International Biodeterioration and Biodegradation, 2012, 72, 76-81.	3.9	18
40	Biodegradation of 2-fluorobenzoate and dichloromethane under simultaneous and sequential alternating pollutant feeding. Water Research, 2008, 42, 3857-3869.	11.3	16
41	Biodegradation of enrofloxacin by microbial consortia obtained from rhizosediments of two estuarine plants. Journal of Environmental Management, 2019, 231, 1145-1153.	7.8	16
42	Potential of bacterial consortia obtained from different environments for bioremediation of paroxetine and bezafibrate. Journal of Environmental Chemical Engineering, 2020, 8, 103881.	6.7	16
43	Long-term performance and microbial dynamics of an up-flow fixed bed reactor established for the biodegradation of fluorobenzene. Applied Microbiology and Biotechnology, 2006, 71, 555-562.	3.6	15
44	Optimization of an Autochthonous Bacterial Consortium Obtained from Beach Sediments for Bioremediation of Petroleum Hydrocarbons. Water (Switzerland), 2021, 13, 66.	2.7	15
45	Mineralization of 4-fluorocinnamic acid by a Rhodococcus strain. Applied Microbiology and Biotechnology, 2014, 98, 1893-1905.	3.6	13
46	Development of an autonomous biosampler to capture in situ aquatic microbiomes. PLoS ONE, 2019, 14, e0216882.	2.5	13
47	Biological treatment of a contaminated gaseous emission from a leather industry in a suspended-growth bioreactor. Chemosphere, 2009, 74, 232-238.	8.2	11
48	Salsipaludibacter albus gen. nov., sp. nov., a novel actinobacterial strain isolate from a Portuguese solar saltern and proposal of Salsipaludibacteraceae fam. nov. and Salsipaludibacterales ord. nov International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	1.7	11
49	Fish performance, intestinal bacterial community, digestive function and skin and fillet attributes during cold storage of gilthead seabream (Sparus aurata) fed diets supplemented with Gracilaria by-products. Aquaculture, 2021, 541, 736808.	3.5	10
50	Bioremediation of Petroleum Hydrocarbons in Seawater: Prospects of Using Lyophilized Native Hydrocarbon-Degrading Bacteria. Microorganisms, 2021, 9, 2285.	3.6	10
51	Microbial degradation of pharmaceuticals followed by a simple HPLC-DAD method. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 2151-2158.	1.7	9
52	Endophytic Actinobacteria for Sustainable Agricultural Applications. Sustainable Development and Biodiversity, 2017, , 163-189.	1.7	9
53	Bioleaching of Heavy Metals from Printed Circuit Boards with an Acidophilic Iron-Oxidizing Microbial Consortium in Stirred Tank Reactors. Bioengineering, 2022, 9, 79.	3.5	8
54	Atlas of the microbial degradation of fluorinated pesticides. Critical Reviews in Biotechnology, 2022, 42, 991-1009.	9.0	6

#	Article	IF	CITATIONS
55	Combining Culture-Dependent and Independent Approaches for the Optimization of Epoxiconazole and Fludioxonil-Degrading Bacterial Consortia. Microorganisms, 2021, 9, 2109.	3.6	6
56	Diversity and Hydrocarbon-Degrading Potential of Deep-Sea Microbial Community from the Mid-Atlantic Ridge, South of the Azores (North Atlantic Ocean). Microorganisms, 2021, 9, 2389.	3.6	6
57	Culturable bacteria from two Portuguese salterns: diversity and bioactive potential. Antonie Van Leeuwenhoek, 2020, 113, 459-475.	1.7	5
58	Seasonal Evaluation of Freshness Profile of Commercially Important Fish Species. Foods, 2021, 10, 1567.	4.3	5
59	Complete Genome Sequence of Two Deep-Sea Streptomyces Isolates from Madeira Archipelago and Evaluation of Their Biosynthetic Potential. Marine Drugs, 2021, 19, 621.	4.6	5
60	ROSM - Robotic Oil Spill Mitigations. , 2019, , .		0