
Yuming Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5832246/publications.pdf Version: 2024-02-01

YUMING CHEN

#	Article	IF	CITATIONS
1	Electrospinning Engineering Enables High-Performance Sodium-Ion Batteries. Advanced Fiber Materials, 2022, 4, 43-65.	16.1	71
2	Recent Progress on Zeolitic Imidazolate Frameworks and Their Derivatives in Alkali Metal–Chalcogen Batteries. Advanced Energy Materials, 2022, 12, 2103152.	19.5	25
3	Plasmonic Nanozymes: Localized Surface Plasmonic Resonance Regulates Reaction Kinetics and Antibacterial Performance. Journal of Physical Chemistry Letters, 2022, 13, 312-323.	4.6	31
4	Research Progress in Lithiumâ€Excess Disordered Rockâ€Salt Oxides Cathode. Energy and Environmental Materials, 2022, 5, 1139-1154.	12.8	33
5	Electrospinningâ€Based Strategies for Battery Materials. Advanced Energy Materials, 2021, 11, 2000845.	19.5	169
6	Functionalized N-doped hollow graphitic carbon-nanotube/carbon -nanosphere composite. Composites Communications, 2021, 23, 100578.	6.3	23
7	Efficient Catalytic Conversion of Polysulfides by Biomimetic Design of "Branch-Leaf―Electrode for High-Energy Sodium–Sulfur Batteries. Nano-Micro Letters, 2021, 13, 50.	27.0	39
8	Recent Advances in Emerging Non‣ithium Metal–Sulfur Batteries: A Review. Advanced Energy Materials, 2021, 11, 2100770.	19.5	34
9	Research progress in electrospinning engineering for all-solid-state electrolytes of lithium metal batteries. Journal of Energy Chemistry, 2021, 61, 253-268.	12.9	52
10	Electrospinning Techniques: Electrospinningâ€Based Strategies for Battery Materials (Adv. Energy) Tj ETQqO O O	rgBT /Ove 19.5	rlock 10 Tf 5 10
11	A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries. Nature Communications, 2021, 12, 6347.	12.8	71
12	Cobalt nanoparticles embedded into free-standing carbon nanofibers as catalyst for room-temperature sodium-sulfur batteries. Journal of Colloid and Interface Science, 2020, 565, 63-69.	9.4	34
13	Nickel-decorated TiO2 nanotube arrays as a self-supporting cathode for lithium-sulfur batteries. Frontiers of Materials Science, 2020, 14, 266-274.	2.2	12
14	Dendrimer-Au Nanoparticle Network Covered Alumina Membrane for Ion Rectification and Enhanced Bioanalysis. Nano Letters, 2020, 20, 1846-1854.	9.1	71
15	Li metal deposition and stripping in a solid-state battery via Coble creep. Nature, 2020, 578, 251-255.	27.8	333
16	Jackfruit-like electrode design for advanced Na-Se batteries. Journal of Power Sources, 2019, 443, 227245.	7.8	32
17	(001) Facet-Dominated Hierarchically Hollow Na ₂ Ti ₃ O ₇ as a High-Rate Anode Material for Sodium-Ion Capacitors. ACS Applied Materials & Interfaces, 2019, 11, 42197-42205.	8.0	31

18Design and Construction of Sodium Polysulfides Defense System for Roomâ€Temperature Naâ€"S Battery.
Advanced Science, 2019, 6, 1901557.11.2106

YUMING CHEN

#	Article	IF	CITATIONS
19	A railway-like network electrode design for room temperature Na–S battery. Journal of Materials Chemistry A, 2019, 7, 150-156.	10.3	60
20	Double-walled N-doped carbon@NiCo ₂ S ₄ hollow capsules as SeS ₂ hosts for advanced Li–SeS ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 12276-12282.	10.3	40
21	Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nature Energy, 2019, 4, 374-382.	39.5	449
22	Honeycomb‣ike Spherical Cathode Host Constructed from Hollow Metallic and Polar Co ₉ S ₈ Tubules for Advanced Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1704443.	14.9	236
23	Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1156-1161.	7.1	512
24	A highly efficient double-hierarchical sulfur host for advanced lithium–sulfur batteries. Chemical Science, 2018, 9, 666-675.	7.4	97
25	Chinese knot-like electrode design for advanced Li-S batteries. Nano Energy, 2018, 53, 354-361.	16.0	72
26	Doubleâ€Shelled NiOâ€NiCo ₂ O ₄ Heterostructure@Carbon Hollow Nanocages as an Efficient Sulfur Host for Advanced Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1800709.	19.5	236
27	Engineering the nanostructure of molybdenum nitride nanodot embedded N-doped porous hollow carbon nanochains for rapid all pH hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 14734-14741.	10.3	56
28	Sodiumâ€lon Batteries: Observation of Pseudocapacitive Effect and Fast Ion Diffusion in Bimetallic Sulfides as an Advanced Sodiumâ€lon Battery Anode (Adv. Energy Mater. 19/2018). Advanced Energy Materials, 2018, 8, 1870092.	19.5	9
29	Observation of Pseudocapacitive Effect and Fast Ion Diffusion in Bimetallic Sulfides as an Advanced Sodiumâ€lon Battery Anode. Advanced Energy Materials, 2018, 8, 1703155.	19.5	374
30	A Catalytic Etching-Wetting-Dewetting Mechanism in the Formation of Hollow Graphitic Carbon Fiber. CheM, 2017, 2, 299-310.	11.7	44
31	Uniform α-Ni(OH)2 hollow spheres constructed from ultrathin nanosheets as efficient polysulfide mediator for long-term lithium-sulfur batteries. Energy Storage Materials, 2017, 8, 202-208.	18.0	93
32	One-step Solvothermal Synthesis of Two-dimensional Ultrathin Na3[Ti2P2O10F] Nanosheets for Lithium/Sodium Storage. Electrochimica Acta, 2017, 246, 141-147.	5.2	3
33	Ultrafine Cobalt Sulfide Nanoparticles Encapsulated Hierarchical N-doped Carbon Nanotubes for High-performance Lithium Storage. Electrochimica Acta, 2017, 225, 137-142.	5.2	46
34	Three-dimensional hierarchical porous tubular carbon as a host matrix for long-term lithium-selenium batteries. Journal of Power Sources, 2017, 367, 17-23.	7.8	28
35	Nitrogen-Doped Carbon for Sodium-Ion Battery Anode by Self-Etching and Graphitization of Bimetallic MOF-Based Composite. CheM, 2017, 3, 152-163.	11.7	228
36	Stable freestanding Li-ion battery cathodes by in situ conformal coating of conducting polypyrrole on NiS-carbon nanofiber films. Journal of Power Sources, 2016, 331, 360-365.	7.8	44

YUMING CHEN

#	Article	IF	CITATIONS
37	Hollow Nanotubes of Nâ€Doped Carbon on CoS. Angewandte Chemie, 2016, 128, 16063-16066.	2.0	14
38	Hollow Nanotubes of Nâ€Đoped Carbon on CoS. Angewandte Chemie - International Edition, 2016, 55, 15831-15834.	13.8	130
39	Electrospun carbon-based nanostructured electrodes for advanced energy storage – A review. Energy Storage Materials, 2016, 5, 58-92.	18.0	178
40	Inserting Sn Nanoparticles into the Pores of TiO _{2â^'<i>x</i>} –C Nanofibers by Lithiation. Advanced Functional Materials, 2016, 26, 376-383.	14.9	51
41	Electrospun nitrogen and carbon co-doped porous TiO ₂ nanofibers with high visible light photocatalytic activity. New Journal of Chemistry, 2015, 39, 6944-6950.	2.8	22
42	Recycled diesel carbon nanoparticles for nanostructured battery anodes. Journal of Power Sources, 2015, 275, 26-31.	7.8	6
43	Sulfur encapsulated in porous hollow CNTs@CNFs for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 10126-10130.	10.3	98
44	Exceptional electrochemical performance of porous TiO ₂ –carbon nanofibers for lithium ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 3875-3880.	10.3	71
45	Core/shell TiO ₂ –MnO ₂ /MnO ₂ heterostructure anodes for high-performance lithium-ion batteries. RSC Advances, 2014, 4, 39906.	3.6	31
46	Hollow-tunneled graphitic carbon nanofibers through Ni-diffusion-induced graphitization as high-performance anode materials. Energy and Environmental Science, 2014, 7, 2689-2696.	30.8	135
47	Hollow Carbon-Nanotube/Carbon-Nanofiber Hybrid Anodes for Li-Ion Batteries. Journal of the American Chemical Society, 2013, 135, 16280-16283.	13.7	426
48	In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries. Nanoscale, 2012, 4, 6800.	5.6	90
49	Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries. Energy and Environmental Science, 2012, 5, 7898.	30.8	191
50	LaOCl nanofibers derived from electrospun PVA/Lanthanum chloride composite fibers. Materials Letters, 2010, 64, 6-8.	2.6	34
51	Y <inf>2</inf> O <inf>3</inf> :Eu ³⁺ luminescent nanofibers from electrospun PVA/Y(NO <inf>3</inf>) <inf>3</inf> /Eu(NO <inf>3</inf>) <inf>3</inf> composite fibers _2010		2