
MercÃ" Rocamora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5832176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Homo- and heterometallic chiral dynamic architectures from allyl–palladium(<scp>ii</scp>) building blocks. Dalton Transactions, 2022, , .	3.3	1
2	Cyclopalladated Compounds with Polyhalogenated Benzylphosphanes for the Mizoroki-Heck Reaction. European Journal of Inorganic Chemistry, 2020, 2020, 2470-2484.	2.0	4
3	Palladium allylic complexes with enantiopure bis(diamidophosphite) ligands bearing a cyclohexane-1,2-diamine skeleton as catalysts in the allylic substitution reaction. Journal of Organometallic Chemistry, 2017, 830, 42-55.	1.8	18
4	Neutral and Cationic Palladium Complexes of <i>P</i> ‣tereogenic Phosphanes Bearing a Heterocyclic Substituent. European Journal of Inorganic Chemistry, 2016, 2016, 4216-4225.	2.0	8
5	Ruthenium complexes of P-stereogenic phosphines with a heterocyclic substituent. Dalton Transactions, 2016, 45, 8513-8531.	3.3	18
6	Diphosphorus Ligands Containing a Pâ€Stereogenic Phosphane and a Chiral Phosphite or Phosphorodiamidite – Evaluation in Pdâ€Catalysed Asymmetric Allylic Substitution Reactions. European Journal of Inorganic Chemistry, 2016, 2016, 4054-4065.	2.0	6
7	Metal Complexes Containing Enantiopure Bis(diamidophosphite) Ligands in Asymmetric Allylic Substitution and Hydroformylation Reactions. Organometallics, 2015, 34, 3799-3808.	2.3	26
8	Asymmetric Hydrovinylation and Hydrogenation with Metal Complexes of <i>C</i> ₃ ‣ymmetric Trisâ€Binaphthyl Monophosphites. European Journal of Inorganic Chemistry, 2014, 2014, 1034-1041.	2.0	17
9	Efficient Palladium Catalysts Containing Original Imidazolium-Tagged Chiral Diamidophosphite Ligands for Asymmetric Allylic Substitutions in Neat Ionic Liquid. Organometallics, 2014, 33, 771-779.	2.3	21
10	Kineticoâ€Mechanistic Insights on the Assembling Dynamics of Allylâ€Cornered Metallacycles: The PtN _{py} Bond is the Keystone. Chemistry - A European Journal, 2014, 20, 14473-14487.	3.3	16
11	New Enantiopure P,P-Bidentate Bis(diamidophosphite) Ligands. Application in Asymmetric Rhodium-Catalyzed Hydrogenation. Organometallics, 2013, 32, 2632-2642.	2.3	42
12	Metal catalysed hydrovinylation. Catalysis Science and Technology, 2013, 3, 1446.	4.1	23
13	Modular Approach to New Chiral Monodentate Diamidophosphite Ligands. Application in Palladium-Catalyzed Asymmetric Hydrovinylation of Styrene. Organometallics, 2011, 30, 115-128.	2.3	40
14	Alternative pH-Shift Ion-Exchange Chromatography: Quantitative Spectroscopic Monitoring of the Progress of a Reaction. Journal of Chemical Education, 2008, 85, 426.	2.3	0
15	Sterically Hindered Square-Planar Nickel(II) Organometallic Complexes: Preparation, Characterization, and Substitution Behavior. Journal of Chemical Education, 2007, 84, 485.	2.3	4
16	Synthesis and characterization of palladium(II) complexes with chiral aminophosphine ligands: Catalytic behaviour in asymmetric hydrovinylation. Crystal structure of cis-[PdCl2(PPh((R)-NHCHCH3Ph)2)2]. Journal of Organometallic Chemistry, 2007, 692, 4005-4019.	1.8	19
17	Carbosilane Dendrimers Peripherally Functionalized with P-Stereogenic Monophosphines. Catalytic Behavior of Their Allylpalladium Complexes in the Asymmetric Hydrovinylation of Styrene. Organometallics, 2006, 25, 1368-1376.	2.3	53
18	Asymmetric allylic alkylation catalyzed by Pd(II)-complexes with (S)-BINPO, a hemilabile axially chiral P,O-heterodonor inducer. Tetrahedron: Asymmetry, 2004, 15, 1477-1485.	1.8	25

MercÃ^{..} Rocamora

#	Article	IF	CITATIONS
19	Asymmetric Allylic Alkylation Catalyzed by Pd(II)-Complexes with (S)-BINPO, a Hemilabile Axially Chiral P,O-Heterodonor Inducer ChemInform, 2004, 35, no.	0.0	0
20	Exo- and Endocyclic Oxazolinyl—Phosphane Palladium Complexes: Catalytic Behavior in Allylic Alkylation Processes ChemInform, 2004, 35, no.	0.0	0
21	Single and double metallic layer-containing ruthenium dendrimers. Synthesis and catalytic properties. Dalton Transactions, 2004, , 2450.	3.3	30
22	Exo- and Endocyclic Oxazolinylâ^'Phosphane Palladium Complexes:Â Catalytic Behavior in Allylic Alkylation Processes. Organometallics, 2004, 23, 3197-3209.	2.3	36
23	Modular Bis(oxazoline) Ligands for Palladium-Catalyzed Allylic Alkylation: Unprecedented Conformational Behavior of a Bis(oxazoline) Palladium η3-1,3-Diphenylallyl Complex ChemInform, 2003, 34, no.	0.0	0
24	Synthesis and catalytic properties of neutral and cationic rhodium- and iridium-containing carbosilane dendrimers. Dalton Transactions, 2003, , 1194-1200.	3.3	26
25	Intramolecular Allyl Transfer Reaction from Allyl Ether to Aldehyde Groups: Experimental and Theoretical Studies. Chemistry - A European Journal, 2002, 8, 664-672.	3.3	18
26	Modular Bis(oxazoline) Ligands for Palladium Catalyzed Allylic Alkylation: Unprecedented Conformational Behaviour of a Bis(oxazoline) Palladium 3-1,3-Diphenylallyl Complex. Chemistry - A European Journal, 2002, 8, 4164-4178.	3.3	78
27	Palladium Complexes with Chiral Oxazoline Ligands. Effect of Chelate Size on Catalytic Allylic Substitutions. Organometallics, 2000, 19, 966-978.	2.3	40
28	Electrochemical cleavage of allyl aryl ethers and allylation of carbonyl compounds: umpolung of allyl-palladium species. Tetrahedron Letters, 1999, 40, 5685-5688.	1.4	36
29	Coordination chemistry of oxazoline ligands. Coordination Chemistry Reviews, 1999, 193-195, 769-835.	18.8	201
30	New Open Tetraaza Nickel(II) and Palladium(II) Complexes. Different Reactivity of the Electrogenerated M(0) Species toward Difunctional Substrates. Organometallics, 1997, 16, 5900-5908.	2.3	18
31	Mechanism of the Insertion Reactions of Alkynes with Phosphanickelacycles. Organometallics, 1995, 14, 5552-5560.	2.3	21
32	Preparation of four-membered phosphonickelocycles. Unusual facile stabilization of five-co-ordinate complexes. Journal of the Chemical Society Dalton Transactions, 1994, , 3075-3084.	1.1	14
33	Preparation and reactivity of five-membered phosphonickelocycles. Journal of the Chemical Society Dalton Transactions, 1993, , 2959-2967.	1.1	15
34	Reactions of neutral and ionic square-planar organometallic nickel compounds with ethylene. Journal of Organometallic Chemistry, 1992, 429, 391-401.	1.8	10
35	Conformation and ligand exchange reactions of trans-[PdCl(C6H4-2-N2Ph)(PR3)2] and related complexes. Journal of Organometallic Chemistry, 1990, 388, 221-231.	1.8	9
36	Reactions of activated alkynes with organonickel complexes. Crystal structure of trans-[NiBr(C(COOMe)î—»C(COOMe) (3,5-Cl2C6H3))(PPh3)2]. Journal of Organometallic Chemistry, 1988, 345, 383-396.	1.8	7

MercÃ^{..} Rocamora

#	Article	IF	CITATIONS
37	Hindered rotation about the palladium-aryl bonds in [Pd(C6H4-2-N=NPh)(.eta.5-C5H5)(PR3)] and related molecules: x-ray crystal structure of (.eta.5-cyclopentadienyl)[2-(phenylazo)phenyl-C1](tricyclohexyl-phosphine)palladium. Organometallics, 1988, 7, 1520-1525.	2.3	15
38	Amine, imine, and aminocarbene complexes of platinum(II). Journal of the Chemical Society Dalton Transactions, 1988, , 1147.	1.1	20
39	Reversible formation of .eta.1 -and .eta.0-cyclopentadienyl complexes by treatment of [M(C6H4N:NC6H4R)(.eta.5-C5H5)] (M = Pd, Pt) with tertiary phosphines. Organometallics, 1987, 6, 1440-1446.	2.3	22
40	13C and proton nuclear magnetic resonance spectra oftrans-[arylbromobis(triethyl) Tj ETQq0 0 0 rgBT /Overlock Pt(PEt3)2X groups. Magnetic Resonance in Chemistry, 1986, 24, 243-246.	10 Tf 50 6 1.9	527 Td (phos 17
41	Decomposition of [NiRR′L2] complexes induced by bromine or anodic oxidation. Journal of Organometallic Chemistry, 1986, 301, 227-236.	1.8	19
42	Reactivity of [NiR(R′)L2] compounds and the crystal structure of [Ni(C2Cl3)(C6H2Me3-2,4,6)(PMe2Ph)2]. Journal of the Chemical Society Dalton Transactions, 1985, , 2333-2341.	1.1	21
43	Reactivity of di-μ-chlorobis[pentachlorophenyl -(triphenylphosphine)nickel(II)] with neutral bases. Journal of Organometallic Chemistry, 1980, 184, 263-268.	1.8	5