Leonard M Eisenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5831824/publications.pdf

Version: 2024-02-01

33 papers 1,982 citations

489802 18 h-index 29 g-index

33 all docs 33 docs citations

33 times ranked 2570 citing authors

#	Article	IF	Citations
1	Accelerated cardiomyocyte senescence contributes to late-onset doxorubicin-induced cardiotoxicity. American Journal of Physiology - Cell Physiology, 2020, 318, C380-C391.	2.1	49
2	Dysregulated protocadherin-pathway activity as an intrinsic defect in induced pluripotent stem cell–derived cortical interneurons from subjects with schizophrenia. Nature Neuroscience, 2019, 22, 229-242.	7.1	84
3	Large-Scale Generation and Characterization of Homogeneous Populations of Migratory Cortical Interneurons from Human Pluripotent Stem Cells. Molecular Therapy - Methods and Clinical Development, 2019, 13, 414-430.	1.8	14
4	A Consideration of the Non-Pregnant Human Uterus as a Stem Cell Source for Medical Therapy. Current Stem Cell Research and Therapy, 2019, 14, 77-78.	0.6	1
5	G9a and G9a-Like Histone Methyltransferases and Their Effect on Cell Phenotype, Embryonic Development, and Human Disease. RNA Technologies, 2019, , 399-433.	0.2	1
6	Notch signaling modulates the electrical behavior of cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H68-H81.	1.5	18
7	Inhibition of Histone Methyltransferase, Histone Deacetylase, and $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Catenin Synergistically Enhance the Cardiac Potential of Bone Marrow Cells. Stem Cells International, 2017, 2017, 1-15.	1.2	7
8	Orexin Receptor Activation Generates Gamma Band Input to Cholinergic and Serotonergic Arousal System Neurons and Drives an Intrinsic Ca2+-Dependent Resonance in LDT and PPT Cholinergic Neurons. Frontiers in Neurology, 2015, 6, 120.	1.1	29
9	Inhibition of G9a Histone Methyltransferase Converts Bone Marrow Mesenchymal Stem Cells to Cardiac Competent Progenitors. Stem Cells International, 2015, 2015, 1-12.	1.2	13
10	5-Azacytidine Promotes the Transdifferentiation of Cardiac Cells to Skeletal Myocytes. Cellular Reprogramming, 2014, 16, 324-330.	0.5	31
11	The Histone Methyltransferase Inhibitor BIX01294 Enhances the Cardiac Potential of Bone Marrow Cells. Stem Cells and Development, 2013, 22, 654-667.	1.1	29
12	Bone marrow cells can be converted into cardiac competent progenitors via inhibition of G9a Histone Methyltransferase G9a. FASEB Journal, 2013, 27, 16.2.	0.2	O
13	Effects of Highâ€Fructose Consumption on Endothelial Progenitor Cell Function. FASEB Journal, 2013, 27, lb670.	0.2	O
14	Treatment of mice with deltaâ€aminolevulinic acid, a generator of the guanylate cyclase activator protoporphyrin IX, prevents the development of hypoxiaâ€induced pulmonary hypertension. FASEB Journal, 2012, 26, 873.20.	0.2	1
15	Canonical WNT Signaling Enhances Stem Cell Expression in the Developing Heart Without a Corresponding Inhibition of Cardiogenic Differentiation. Stem Cells and Development, 2011, 20, 1973-1983.	1.1	11
16	Treatment of Mice with Cobalt Protoporphyrin, an Inducer of Heme Oxygenase and ecSOD, Prevents the Development of Pulmonary Hypertension Caused by Chronic Hypoxia. FASEB Journal, 2011, 25, 1034.11.	0.2	0
17	Evaluating the Role of Wnt Signal Transduction in Promoting the Development of the Heart. Scientific World Journal, The, 2007, 7, 161-176.	0.8	33
18	Wnt signal transduction and the formation of the myocardium. Developmental Biology, 2006, 293, 305-315.	0.9	99

#	Article	IF	Citations
19	Bone Marrow Cells Transdifferentiate to Cardiomyocytes When Introduced into the Embryonic Heart. Stem Cells, 2006, 24, 1236-1245.	1.4	46
20	Embryonic Myocardium Shows Increased Longevity as a Functional Tissue When Cultured in the Presence of a Noncardiac Tissue Layer. Tissue Engineering, 2006, 12, 853-865.	4.9	6
21	Multiple Stem Cell Populations Contribute to the Formation of the Myocardium. Annals of the New York Academy of Sciences, 2005, 1047, 38-49.	1.8	8
22	Introduction: Stem cells and the cardiovascular system. The Anatomical Record, 2004, 276A, 1-1.	2.3	0
23	Stem cells and the formation of the myocardium in the vertebrate embryo. The Anatomical Record, 2004, 276A, 2-12.	2.3	20
24	Adult stem cells and their cardiac potential. The Anatomical Record, 2004, 276A, 103-112.	2.3	28
25	An In Vitro Analysis of Myocardial Potential Indicates That Phenotypic Plasticity Is an Innate Property of Early Embryonic Tissue. Stem Cells and Development, 2004, 13, 614-624.	1.1	12
26	Cellular recruitment and the development of the myocardium. Developmental Biology, 2004, 274, 225-232.	0.9	46
27	Hematopoietic cells from bone marrow have the potential to differentiate into cardiomyocytes in vitro. The Anatomical Record, 2003, 274A, 870-882.	2.3	51
28	Stem cell plasticity, cell fusion, and transdifferentiation. Birth Defects Research Part C: Embryo Today Reviews, 2003, 69, 209-218.	3.6	75
29	Belief vs. scientific observation: The curious story of the precardiac mesoderm. The Anatomical Record, 2002, 266, 194-197.	2.3	18
30	Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature, 2002, 418, 636-641.	13.7	507
31	WNT11 promotes cardiac tissue formation of early mesoderm. Developmental Dynamics, 1999, 216, 45-58.	0.8	167
32	WNT11 promotes cardiac tissue formation of early mesoderm. Developmental Dynamics, 1999, 216, 45-58.	0.8	1
33	Molecular Regulation of Atrioventricular Valvuloseptal Morphogenesis. Circulation Research, 1995, 77, 1-6.	2.0	577