Isabel Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5831241/publications.pdf

Version: 2024-02-01

159358 214527 2,358 68 30 47 citations g-index h-index papers 69 69 69 3207 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Resilient moth-eye nanoimprinted antireflective and self-cleaning TiO2 sputter-coated PMMA films. Applied Surface Science, 2022, 585, 152653.	3.1	10
2	Mechanoâ€Dynamic Analysis of the Bactericidal Activity of Bioinspired Mothâ€Eye Nanopatterned Surfaces. Advanced Materials Interfaces, 2022, 9, .	1.9	4
3	Bioinspired antireflective flexible films with optimized mechanical resistance fabricated by roll to roll thermal nanoimprint. Scientific Reports, 2021, 11, 2419.	1.6	21
4	Polystyrene Nanopillars with Inbuilt Carbon Nanotubes Enable Synaptic Modulation and Stimulation in Interfaced Neuronal Networks. Advanced Materials Interfaces, 2021, 8, 2002121.	1.9	13
5	Improved thermal stability of antireflective moth-eye topography imprinted on PMMA/TiO ₂ surface nanocomposites. Nanotechnology, 2021, 32, 335302.	1.3	1
6	Microvessel-on-Chip Fabrication for the <i>In Vitro</i> Modeling of Nanomedicine Transport. ACS Omega, 2021, 6, 25109-25115.	1.6	8
7	Roll-to-roll nanoimprint lithography of high efficiency Fresnel lenses for micro-concentrator photovoltaics. Optics Express, 2021, 29, 34135.	1.7	10
8	On the nature of solvothermally synthesized carbon nanodots. Journal of Materials Chemistry C, 2021, 9, 16935-16944.	2.7	11
9	Multilevel Hierarchical Topographies by Combined Photolithography and Nanoimprinting Processes To Create Surfaces with Controlled Wetting. ACS Applied Nano Materials, 2019, 2, 4727-4733.	2.4	17
10	Engineered protein-based functional nanopatterned materials for bio-optical devices. Nanoscale Advances, 2019, 1, 3980-3991.	2.2	17
11	Flexible distributed feedback lasers based on nanoimprinted cellulose diacetate with efficient multiple wavelength lasing. Npj Flexible Electronics, 2019, 3, .	5.1	22
12	Fluorescent C-NanoDots for rapid detection of BRCA1, CFTR and MRP3 gene mutations. Mikrochimica Acta, 2019, 186, 293.	2.5	8
13	Moth-eye mimetic cytocompatible bactericidal nanotopography: a convergent design. Bioinspiration and Biomimetics, 2018, 13, 026011.	1.5	27
14	Nano-engineering safer-by-design nanoparticle based moth-eye mimetic bactericidal and cytocompatible polymer surfaces. RSC Advances, 2018, 8, 22606-22616.	1.7	20
15	Efficient Optical Gain from Nearâ€Infrared Polymer Lasers Based on Poly[<i>N</i> â€5,5â€(4′,7′â€diâ€2â€thienylâ€2′, Optical Materials, 2018, 6, 1800263.	1â €? 63′	¦â €b ænzoth¦ac
16	Single-imprint moth-eye anti-reflective and self-cleaning film with enhanced resistance. Nanoscale, 2018, 10, 15496-15504.	2.8	38
17	Highly pH-responsive sensor based on amplified spontaneous emission coupled to colorimetry. Scientific Reports, 2017, 7, 46265.	1.6	3
18	Multifunctional Nano-engineered Polymer Surfaces with Enhanced Mechanical Resistance and Superhydrophobicity. Scientific Reports, 2017, 7, 43450.	1.6	17

#	Article	IF	CITATIONS
19	Biomechanical Cell Regulation by High Aspect Ratio Nanoimprinted Pillars. Advanced Functional Materials, 2016, 26, 5599-5609.	7.8	40
20	Flexible all-polymer waveguide for low threshold amplified spontaneous emission. Scientific Reports, 2016, 6, 34565.	1.6	26
21	Lotus bioinspired superhydrophobic, selfâ€eleaning surfaces from hierarchically assembled templates. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 603-609.	2.4	42
22	Shear Adhesion Strength of Gecko-Inspired Tapes on Surfaces with Variable Roughness. Journal of Adhesion, 2013, 89, 921-936.	1.8	13
23	Microfluidic cell trap array for controlled positioning of single cells on adhesive micropatterns. Lab on A Chip, 2013, 13, 714.	3.1	71
24	Review: Micro- and nanostructured surface engineering for biomedical applications. Journal of Materials Research, 2013, 28, 165-174.	1.2	77
25	A portable labâ€onâ€aâ€chip instrument based on <scp>MCE</scp> with dual top–bottom capacitive coupled contactless conductivity detector in replaceable cell cartridge. Electrophoresis, 2013, 34, 1390-1399.	1.3	29
26	Numerical study of dc-biased ac-electrokinetic flow over symmetrical electrodes. Biomicrofluidics, 2012, 6, 12817-1281710.	1.2	6
27	DC-biased AC-electrokinetics: a conductivity gradient driven fluid flow. Lab on A Chip, 2011, 11, 4241.	3.1	20
28	Fabrication and Analysis of Gecko-Inspired Hierarchical Polymer Nanosetae. ACS Nano, 2011, 5, 1897-1906.	7.3	82
29	Micropatterns of cell adhesive proteins with poly(ethylene oxide)â€∢i>blockàePoly(4â€vinylpyridine) diblock copolymer. Biotechnology and Bioengineering, 2011, 108, 983-987.	1.7	5
30	The effect of topography of polymer surfaces on platelet adhesion. Biomaterials, 2010, 31, 1533-1545.	5.7	166
31	Nanotubes-/nanowires-based, microfluidic-integrated transistors for detecting biomolecules. Microfluidics and Nanofluidics, 2010, 9, 1185-1214.	1.0	28
32	Capacitively coupled contactless conductivity detection with dual top–bottom cell configuration for microchip electrophoresis. Electrophoresis, 2010, 31, 1063-1070.	1.3	48
33	Direct Detection of Heroin Metabolites Using a Competitive Immunoassay Based on a Carbonâ€Nanotube Liquidâ€Gated Fieldâ€Effect Transistor. Small, 2010, 6, 993-998.	5.2	43
34	Conformational behavior of fibrinogen on topographically modified polymer surfaces. Physical Chemistry Chemical Physics, 2010, 12, 10301.	1.3	22
35	Femtomolar detection of 2,4-dichlorophenoxyacetic acidherbicidesvia competitive immunoassays using microfluidic based carbon nanotube liquid gated transistor. Lab on A Chip, 2010, 10, 634-638.	3.1	48
36	Investigation of sensing mechanism and signal amplification in carbon nanotube based microfluidic liquid-gated transistors via pulsating gate bias. Lab on A Chip, 2010, 10, 1454.	3.1	2

3

#	Article	IF	Citations
37	Experimental verification of Faradaic charging in ac electrokinetics. Biomicrofluidics, 2009, 3, 022405.	1.2	25
38	Mimicking Dominoâ€Like Photonic Nanostructures on Butterfly Wings. Small, 2009, 5, 574-578.	5.2	48
39	Restrictive dual capacitively coupled contactless conductivity detection for microchip electrophoresis. Procedia Chemistry, 2009, 1, 1351-1354.	0.7	3
40	A novel nanostructured poly(lactic-co-glycolic-acid)–multi-walled carbon nanotube composite for blood-contacting applications: Thrombogenicity studies. Acta Biomaterialia, 2009, 5, 3411-3422.	4.1	51
41	Protein/carbon nanotubes interaction: The effect of carboxylic groups on conformational and conductance changes. Applied Physics Letters, 2009, 95, 073704.	1.5	31
42	DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Lab on A Chip, 2009, 9, 802-809.	3.1	141
43	Laminated, microfluidic-integrated carbon nanotube based biosensors. Applied Physics Letters, 2009, 94, 013107.	1.5	34
44	Fabrication of Adhesive Protein Micropatterns In Application of Studying Cell Surface Interactions. IFMBE Proceedings, 2009, , 1980-1983.	0.2	0
45	Thermally activated solvent bonding of polymers. Microsystem Technologies, 2008, 14, 753-759.	1.2	52
46	Platelet adhesion studies on nanostructured poly(lacticâ€ <i>co</i> â€glycolicâ€acid)–carbon nanotube composite. Journal of Biomedical Materials Research - Part A, 2008, 86A, 394-401.	2.1	30
47	Controlled Fabrication of Multitiered Threeâ€Dimensional Nanostructures in Porous Alumina. Advanced Functional Materials, 2008, 18, 2057-2063.	7.8	56
48	Modeling of dielectrophoretic force for moving dielectrophoresis electrodes. Journal of Electrostatics, 2008, 66, 514-525.	1.0	34
49	Cell Motion Model for Moving Dielectrophoresis. Analytical Chemistry, 2008, 80, 5454-5461.	3.2	40
50	Platelet Response on Poly(D,L -lactide-co-glycolide) (PLGA) Film with Nano-structured Fillers., 2008,,.		1
51	Dynamic Cell Fractionation and Transportation Using Moving Dielectrophoresis. Analytical Chemistry, 2007, 79, 6975-6987.	3.2	52
52	Fabrication of labâ€on chip platforms by hot embossing and photo patterning. Biotechnology Journal, 2007, 2, 1381-1388.	1.8	21
53	Fluidic lenses with variable focal length. Applied Physics Letters, 2006, 88, 041120.	1.5	106
54	Fabrication of PMMA micro- and nanofluidic channels by proton beam writing: electrokinetic and morphological characterization. Journal of Micromechanics and Microengineering, 2006, 16, 1170-1180.	1.5	39

#	Article	IF	Citations
55	Isolated, sealed nanofluidic channels formed by combinatorial-mould nanoimprint lithography. Nanotechnology, 2006, 17, 1975-1980.	1.3	35
56	Experimental study and numerical estimation of current changes in electroosmotically pumped microfluidic devices. Electrophoresis, 2005, 26, 1114-1121.	1.3	22
57	Practical integration of polymerase chain reaction amplification and electrophoretic analysis in microfluidic devices for genetic analysis. Electrophoresis, 2003, 24, 172-178.	1.3	54
58	High-speed chiral separations on microchip electrophoresis devices. Electrophoresis, 2000, 21, 211-219.	1.3	104
59	Surface deactivation in protein and peptide analysis by capillary electrophoresis. Analytica Chimica Acta, 1999, 383, 1-26.	2.6	133
60	Microchannel electrophoretic separation of biogenic amines by micellar electrokinetic chromatography. Electrophoresis, 1999, 20, 118-126.	1.3	42
61	Enantiomeric separation of amino acids derivatized with fluoresceine isothiocyanate isomer I by micellar electrokinetic chromatography using \hat{I}^2 - and \hat{I}^3 -cyclodextrins as chiral selectors. Electrophoresis, 1999, 20, 1538-1545.	1.3	42
62	Ion-pair solid-phase extraction of biogenic amines before micellar electrokinetic chromatography with laser-induced fluorescence detection of their fluorescein thiocarbamyl derivatives. Electrophoresis, 1999, 20, 1862-1868.	1.3	27
63	Capillary electrophoresis separation of p-sulfonated calix[n]arenes, n=4,6,8. Talanta, 1998, 45, 683-691.	2.9	6
64	Liquid Chromatographic Separationa of Calixarenes. Journal of Liquid Chromatography and Related Technologies, 1997, 20, 1197-1209.	0.5	5
65	Conventional capillary electrophoresis in comparison with short-capillary capillary electrophoresis and microfabricated glass chip capillary electrophoresis for the analysis of fluorescein isothiocyanate anti-human immunoglobulin G. Journal of Chromatography A, 1997, 781, 287-293.	1.8	33
66	Separation of biogenic amines by micellar electrokinetic chromatography. Journal of Chromatography A, 1996, 745, 255-262.	1.8	54
67	DC-Biased AC-Electrokinetic Mixing: A Mechanistic Investigation. Advanced Materials Research, 0, 74, 109-112.	0.3	2
68	Enhanced Mechanical and Thermal Resistances of Nanoimprinted Antireflective Mothâ€Eye Surfaces Based on Poly Vinylidene Fluoride/TiO 2 Surface Nanocomposites. Advanced Engineering Materials, 0, , 2100603.	1.6	2