Anabela Rl Martins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/583115/publications.pdf

Version: 2024-02-01

77 papers 5,573 citations

39 h-index 79698 73 g-index

79 all docs 79 docs citations

79 times ranked 5446 citing authors

#	Article	IF	CITATIONS
1	Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chemistry, 2015, 173, 501-513.	8.2	633
2	Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food and Chemical Toxicology, 2012, 50, 191-197.	3 . 6	364
3	Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. Journal of Applied Microbiology, 2013, 115, 346-357.	3.1	299
4	A Review on Antimicrobial Activity of Mushroom (Basidiomycetes) Extracts and Isolated Compounds. Planta Medica, 2012, 78, 1707-1718.	1.3	262
5	Compounds from Wild Mushrooms with Antitumor Potential. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 424-436.	1.7	238
6	Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food and Chemical Toxicology, 2012, 50, 1201-1207.	3.6	235
7	Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chemistry, 2010, 119, 1443-1450.	8.2	181
8	Functional foods based on extracts or compounds derived from mushrooms. Trends in Food Science and Technology, 2017, 66, 48-62.	15.1	164
9	Chemical composition of wild edible mushrooms and antioxidant properties of their water soluble polysaccharidic and ethanolic fractions. Food Chemistry, 2011, 126, 610-616.	8.2	157
10	Towards chemical and nutritional inventory of Portuguese wild edible mushrooms in different habitats. Food Chemistry, 2012, 130, 394-403.	8.2	139
11	Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics—A review. Industrial Crops and Products, 2016, 90, 38-48.	5. 2	134
12	Fruiting body, spores and in vitro produced mycelium of Ganoderma lucidum from Northeast Portugal: A comparative study of the antioxidant potential of phenolic and polysaccharidic extracts. Food Research International, 2012, 46, 135-140.	6.2	123
13	Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters. Food and Chemical Toxicology, 2013, 58, 95-100.	3. 6	120
14	Effect of gamma and electron beam irradiation on the physico-chemical and nutritional properties of mushrooms: A review. Food Chemistry, 2012, 135, 641-650.	8.2	118
15	The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives. Food Research International, 2015, 76, 821-827.	6.2	111
16	Study and characterization of selected nutrients in wild mushrooms from Portugal by gas chromatography and high performance liquid chromatography. Microchemical Journal, 2009, 93, 195-199.	4.5	99
17	Wild mushrooms Clitocybe alexandri and Lepista inversa: In vitro antioxidant activity and growth inhibition of human tumour cell lines. Food and Chemical Toxicology, 2010, 48, 2881-2884.	3.6	98
18	A comparative study of chemical composition, antioxidant and antimicrobial properties of Morchella esculenta (L.) Pers. from Portugal and Serbia. Food Research International, 2013, 51, 236-243.	6.2	90

#	Article	IF	CITATIONS
19	Anti-inflammatory potential of mushroom extracts and isolated metabolites. Trends in Food Science and Technology, 2016, 50, 193-210.	15.1	89
20	Antimicrobial activity of wild mushroom extracts against clinical isolates resistant to different antibiotics. Journal of Applied Microbiology, 2012, 113, 466-475.	3.1	86
21	Toward the Antioxidant and Chemical Characterization of Mycorrhizal Mushrooms from Northeast Portugal. Journal of Food Science, 2011, 76, C824-30.	3.1	80
22	Phenolic, Polysaccharidic, and Lipidic Fractions of Mushrooms from Northeastern Portugal: Chemical Compounds with Antioxidant Properties. Journal of Agricultural and Food Chemistry, 2012, 60, 4634-4640.	5.2	78
23	Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius. Mycorrhiza, 2007, 17, 185-193.	2.8	76
24	A Review on Antifungal Activity of Mushroom (Basidiomycetes) Extracts and Isolated Compounds. Current Topics in Medicinal Chemistry, 2013, 13, 2648-2659.	2.1	70
25	Wild mushrooms and their mycelia as sources of bioactive compounds: Antioxidant, anti-inflammatory and cytotoxic properties. Food Chemistry, 2017, 230, 40-48.	8.2	70
26	Nutritional characterisation of Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm. produced using paper scraps as substrate. Food Chemistry, 2015, 169, 396-400.	8.2	67
27	Effects of trophism on nutritional and nutraceutical potential of wild edible mushrooms. Food Research International, 2011, 44, 1029-1035.	6.2	63
28	Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. LWT - Food Science and Technology, 2015, 63, 799-806.	5.2	63
29	Biomolecule Profiles in Inedible Wild Mushrooms with Antioxidant Value. Molecules, 2011, 16, 4328-4338.	3.8	60
30	Targeted metabolites analysis in wild Boletus species. LWT - Food Science and Technology, 2011, 44, 1343-1348.	5.2	58
31	Diversity and fruiting pattern of macrofungi associated with chestnut (Castanea sativa) in the Trás-os-Montes region (Northeast Portugal). Fungal Ecology, 2010, 3, 9-19.	1.6	51
32	Phenolic profile of seventeen Portuguese wild mushrooms. LWT - Food Science and Technology, 2011, 44, 343-346.	5.2	51
33	Portuguese wild mushrooms at the "pharma–nutrition―interface: Nutritional characterization and antioxidant properties. Food Research International, 2013, 50, 1-9.	6.2	50
34	Effects of different processing technologies on chemical and antioxidant parameters of Macrolepiota procera wild mushroom. LWT - Food Science and Technology, 2013, 54, 493-499.	5.2	48
35	Effects of gamma irradiation on physical parameters of Lactarius deliciosus wild edible mushrooms. Postharvest Biology and Technology, 2012, 74, 79-84.	6.0	47
36	Influence of mycorrhization on physiological parameters of micropropagated Castanea sativa Mill. plants. Mycorrhiza, 1997, 7, 161-165.	2.8	43

#	Article	IF	Citations
37	Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation. Pathogens, 2014, 3, 667-679.	2.8	43
38	Effect of ectomycorrhizal fungi on survival and growth of micropropagated plants and seedlings of Castanea sativa mill Mycorrhiza, 1996, 6, 265-270.	2.8	42
39	Study of chemical changes and antioxidant activity variation induced by gamma-irradiation on wild mushrooms: Comparative study through principal component analysis. Food Research International, 2013, 54, 18-25.	6.2	42
40	Suillus collinitus methanolic extract increases p53 expression and causes cell cycle arrest and apoptosis in a breast cancer cell line. Food Chemistry, 2012, 135, 596-602.	8.2	38
41	Clitocybe alexandri extract induces cell cycle arrest and apoptosis in a lung cancer cell line: Identification of phenolic acids with cytotoxic potential. Food Chemistry, 2012, 132, 482-486.	8.2	38
42	Effects of Gamma Irradiation on the Chemical Composition and Antioxidant Activity of Lactarius deliciosus L. Wild Edible Mushroom. Food and Bioprocess Technology, 2013, 6, 2895-2903.	4.7	37
43	Effect of gamma irradiation and extended storage on selected chemical constituents and antioxidant activities of sliced mushroom. Food Control, 2017, 72, 328-337.	5.5	37
44	In Vitro Cultures of Brassica oleracea L. var.costataDC: Potential Plant Bioreactor for Antioxidant Phenolic Compounds. Journal of Agricultural and Food Chemistry, 2009, 57, 1247-1252.	5.2	36
45	Wild <i>Morchella conica</i> Pers. from different origins: a comparative study of nutritional and bioactive properties. Journal of the Science of Food and Agriculture, 2016, 96, 90-98.	3.5	36
46	Feasibility of electron-beam irradiation to preserve wild dried mushrooms: Effects on chemical composition and antioxidant activity. Innovative Food Science and Emerging Technologies, 2014, 22, 158-166.	5.6	34
47	Effects of gamma irradiation on chemical composition and antioxidant potential of processed samples of the wild mushroom Macrolepiota procera. Food Chemistry, 2014, 149, 91-98.	8.2	30
48	Chemical composition, antioxidant activity and bioaccessibility studies in phenolic extracts of two Hericium wild edible species. LWT - Food Science and Technology, 2015, 63, 475-481.	5.2	30
49	Cytotoxicity of Coprinopsis atramentaria extract, organic acids and their synthesized methylated and glucuronate derivatives. Food Research International, 2014, 55, 170-175.	6.2	28
50	Polyporus squamosus (Huds.) Fr from different origins: Chemical characterization, screening of the bioactive properties and specific antimicrobial effects against Pseudomonas aeruginosa. LWT - Food Science and Technology, 2016, 69, 91-97.	5.2	28
51	Extended use of gamma irradiation in wild mushrooms conservation: Validation of 2ÂkGy dose to preserve their chemical characteristics. LWT - Food Science and Technology, 2016, 67, 99-105.	5.2	27
52	Exquisite wild mushrooms as a source of dietary fiber: Analysis in electron-beam irradiated samples. LWT - Food Science and Technology, 2015, 60, 855-859.	5.2	25
53	A comparative study of tocopherols composition and antioxidant properties of in vivo and in vitro ectomycorrhizal fungi. LWT - Food Science and Technology, 2011, 44, 820-824.	5.2	23
54	Wild mushroom extracts potentiate the action of standard antibiotics against multiresistant bacteria. Journal of Applied Microbiology, 2014, 116, 32-38.	3.1	23

#	Article	IF	CITATIONS
55	How does electron beam irradiation dose affect the chemical and antioxidant profiles of wild dried Amanita mushrooms?. Food Chemistry, 2015, 182, 309-315.	8.2	22
56	Combined Effects of Electron-Beam Irradiation and Storage Time on the Chemical and Antioxidant Parameters of Wild Macrolepiota procera Dried Samples. Food and Bioprocess Technology, 2014, 7, 1606-1617.	4.7	21
57	Analytical Methods Applied to the Chemical Characterization and Antioxidant Properties of Three Wild Edible Mushroom Species from Northeastern Portugal. Food Analytical Methods, 2014, 7, 645-652.	2.6	19
58	Leccinum vulpinum Watling induces DNA damage, decreases cell proliferation and induces apoptosis on the human MCF-7 breast cancer cell line. Food and Chemical Toxicology, 2016, 90, 45-54.	3 . 6	19
59	Coprinopsis atramentaria extract, its organic acids, and synthesized glucuronated and methylated derivatives as antibacterial and antifungal agents. Food and Function, 2014, 5, 2521-2528.	4.6	18
60	Can Suillus granulatus (L.) Roussel be classified as a functional food?. Food and Function, 2014, 5, 2861-2869.	4.6	17
61	Chemical composition and evaluation of antioxidant, antimicrobial and antiproliferative activities of Tuber and Terfezia truffles. Food Research International, 2021, 140, 110071.	6.2	15
62	Incorporation of tocopherol-rich extracts from mushroom mycelia into yogurt. Food and Function, 2018, 9, 3166-3172.	4.6	14
63	Suillus luteus methanolic extract inhibits cell growth and proliferation of a colon cancer cell line. Food Research International, 2013, 53, 476-481.	6.2	13
64	Using Gamma Irradiation to Attenuate the Effects Caused by Drying or Freezing in Macrolepiota procera Organic Acids and Phenolic Compounds. Food and Bioprocess Technology, 2014, 7, 3012-3021.	4.7	13
65	Development of nutraceutical formulations based on the mycelium of Pleurotus ostreatus and Agaricus bisporus. Food and Function, 2017, 8, 2155-2164.	4.6	12
66	Expanding Current Knowledge on the Chemical Composition and Antioxidant Activity of the Genus Lactarius. Molecules, 2014, 19, 20650-20663.	3.8	9
67	Triacylglycerols profiling as a chemical tool to identify mushrooms submitted to gamma or electron beam irradiation. Food Chemistry, 2014, 159, 399-406.	8.2	8
68	Mycorrhizal induction of phenolic compounds and antioxidant properties of fungi and seedlings during the early steps of symbiosis. Chemoecology, 2011, 21, 151-159.	1.1	7
69	Effect of the mycorrhizal symbiosis time in the antioxidant activity of fungi and Pinus pinaster roots, stems and leaves. Industrial Crops and Products, 2012, 35, 211-216.	5. 2	7
70	Gamma and electron-beam irradiation as viable technologies for wild mushrooms conservation: effects on macro- and micro-elements. European Food Research and Technology, 2016, 242, 1169-1175.	3.3	7
71	In vitro Mycorrhization of Micropropagated Plants: Studies on Castanea sativa Mill., 2008, , 321-336.		7
72	Nutritional and Biochemical Profiling of Leucopaxillus candidus (Bres.) Singer Wild Mushroom. Molecules, 2016, 21, 99.	3.8	6

#	Article	IF	CITATIONS
73	Suillus luteus methanolic extract inhibits proliferation and increases expression of p-H2A.X in a non-small cell lung cancer cell line. Journal of Functional Foods, 2014, 6, 100-106.	3.4	5
74	Antioxidants in Pinus pinaster roots and mycorrhizal fungi during the early steps of symbiosis. Industrial Crops and Products, 2012, 38, 99-106.	5.2	4
75	Leccinum molle (Bon) Bon and Leccinum vulpinum Watling: The First Study of Their Nutritional and Antioxidant Potential. Molecules, 2016, 21, 246.	3.8	4
76	EFFECT OF SOIL TILLAGE ON DIVERSITY AND ABUNDANCE OF MACROFUNGI ASSOCIATED WITH CHESTNUT TREE IN THE NORTHEAST OF PORTUGAL. Acta Horticulturae, 2005, , 685-690.	0.2	1
77	Evaluation of the chemical interactions in co-culture elements of Castanea sativa Miller mycorrhization. Industrial Crops and Products, 2013, 42, 105-112.	5. 2	1