
## Gabriela L Atanasova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5830728/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Flexible Multiband Antenna for Biomedical Telemetry. IETE Journal of Research, 2023, 69, 189-202.                                                                                                                              | 2.6 | 4         |
| 2  | Miniaturized Wearable Antennas with Improved Radiation Efficiency Using Magneto-dielectric<br>Composites. IETE Journal of Research, 2022, 68, 1157-1167.                                                                         | 2.6 | 10        |
| 3  | Rubber composites based on renewable resources and their potential for application in flexible wearable antennas. Iranian Polymer Journal (English Edition), 2022, 31, 1117-1127.                                                | 2.4 | 1         |
| 4  | Wearable Antennas for Sensor Networks and IoT Applications: Evaluation of SAR and Biological Effects. Sensors, 2022, 22, 5139.                                                                                                   | 3.8 | 8         |
| 5  | Natural rubber composites containing low and high dielectric constant fillers and their application as substrates for compact flexible antennas. Polymers and Polymer Composites, 2021, 29, 233-245.                             | 1.9 | 6         |
| 6  | Flexible polymer/fabric fractal monopole antenna for wideband applications. IET Microwaves,<br>Antennas and Propagation, 2021, 15, 80-92.                                                                                        | 1.4 | 6         |
| 7  | Design of a flexible waterproof antenna for Internet of Things applications. Journal of Electromagnetic Waves and Applications, 2021, 35, 874-887.                                                                               | 1.6 | 4         |
| 8  | Structure and composition characterization of biocomposites filled with sol–gel bioglasses from<br>the CaO–SiO2–P2O5–Ag2O systems. Journal of Rubber Research (Kuala Lumpur, Malaysia), 2021, 24,<br>77-92.                      | 1.1 | 0         |
| 9  | Assessment of Energy Absorption and Hemolysis of RBCs Due to a Wearable Antenna. , 2021, , .                                                                                                                                     |     | 0         |
| 10 | Natural rubber–based composites filled with bioglasses from a CaOâ€SiO 2 â€P 2 O 5 â€Ag 2 O system. Effect of Ag 2 O concentration in the filler on composite properties. Polymers for Advanced Technologies, 2020, 31, 574-588. | 3.2 | 3         |
| 11 | Impact of Electromagnetic Properties of Textile Materials on Performance of a Low-Profile Wearable<br>Antenna Backed by a Reflector. , 2020, , .                                                                                 |     | 9         |
| 12 | Natural rubber composites containing fillers of sol–gel glasses and glass–ceramics in the<br>CaO–SiO2–P2O5 system. Iranian Polymer Journal (English Edition), 2020, 29, 799-810.                                                 | 2.4 | 0         |
| 13 | A flexible broadband antenna for IoT applications. International Journal of Microwave and Wireless<br>Technologies, 2020, 12, 531-540.                                                                                           | 1.9 | 19        |
| 14 | Small Antennas for Wearable Sensor Networks: Impact of the Electromagnetic Properties of the Textiles on Antenna Performance. Sensors, 2020, 20, 5157.                                                                           | 3.8 | 31        |
| 15 | Rubber-ceramic composites applicable in flexible antennas. Journal of Polymer Engineering, 2020, 40, 666-675.                                                                                                                    | 1.4 | 1         |
| 16 | A Wearable, Low-Profile, Fractal Monopole Antenna Integrated with a Reflector for Enhancing<br>Antenna Performance and SAR Reduction. , 2019, , .                                                                                |     | 12        |
| 17 | Electrical, mechanical and dynamic properties of ternary composites from acrylonitrile butadiene rubber and conductive fillers. Bulletin of Materials Science, 2019, 42, 1.                                                      | 1.7 | 1         |
| 18 | Design and performance analysis of dual-band wearable compact low-profile antenna for body-centric<br>wireless communications. International Journal of Microwave and Wireless Technologies, 2018, 10,<br>1175-1185.             | 1.9 | 24        |

GABRIELA L ATANASOVA

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Flexible and small wearable antenna for wireless body area network applications. Journal of Electromagnetic Waves and Applications, 2017, 31, 1063-1082.                                                    | 1.6  | 36        |
| 20 | Enhancing antenna performance and SAR reduction by a conductive composite loaded with carbon-silica hybrid filler. AEU - International Journal of Electronics and Communications, 2017, 72, 184-191.        | 2.9  | 19        |
| 21 | Analysis of the electrical and magnetic properties of elastomeric composites and their applicability in small flexible wearable antennas. Materials Research Express, 2017, 4, 076304.                      | 1.6  | 4         |
| 22 | On-body investigation of a compact planar antenna on multilayer polymer composite for body-centric wireless communications. AEU - International Journal of Electronics and Communications, 2017, 82, 20-29. | 2.9  | 38        |
| 23 | A FLEXIBLE PLANAR ANTENNA ON MULTILAYER RUBBER COMPOSITE FOR WEARABLE DEVICES. Progress in Electromagnetics Research C, 2017, 75, 31-42.                                                                    | 0.9  | 10        |
| 24 | Microwave properties of natural rubber based composites comprising conductive carbon black/silica hybrid fillers. Journal of Polymer Research, 2016, 23, 1.                                                 | 2.4  | 7         |
| 25 | Conductive carbon black/magnetite hybrid fillers in microwave absorbing composites based on natural rubber. Composites Part B: Engineering, 2016, 96, 231-241.                                              | 12.0 | 80        |
| 26 | Tuning, coupling and matching of a resonant cavity in microwave exposure system for biological objects. Electromagnetic Biology and Medicine, 2013, 32, 218-225.                                            | 1.4  | 8         |
| 27 | An investigation impact of user's positions in closed space over SAR in the head induced from mobile phone. The Environmentalist, 2011, 31, 181-186.                                                        | 0.7  | 6         |
| 28 | Wearable Textile Antennas with High Body-Antenna Isolation: Design, Fabrication, and Characterization Aspects. , 0, , .                                                                                     |      | 12        |