
Karoly Liliom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5830664/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular cloning of a high-affinity receptor for the growth factor-like lipid mediator lysophosphatidic acid from Xenopus oocytes. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 14367-14372.	3.3	188
2	Identification of Edg1 Receptor Residues That Recognize Sphingosine 1-Phosphate. Journal of Biological Chemistry, 2000, 275, 39379-39384.	1.6	147
3	Sphingosylphosphocholine is a naturally occurring lipid mediator in blood plasma: a possible role in regulating cardiac function via sphingolipid receptors. Biochemical Journal, 2001, 355, 189-197.	1.7	143
4	Naturally Occurring Analogs of Lysophosphatidic Acid Elicit Different Cellular Responses through Selective Activation of Multiple Receptor Subtypes. Molecular Pharmacology, 1998, 54, 979-988.	1.0	123
5	Synthesis, Structureâ~Activity Relationships, and Biological Evaluation of Fatty Alcohol Phosphates as Lysophosphatidic Acid Receptor Ligands, Activators of PPARγ, and Inhibitors of Autotaxinâ€. Journal of Medicinal Chemistry, 2005, 48, 4919-4930.	2.9	104
6	Growth factor-like phospholipids generated after corneal injury. American Journal of Physiology - Cell Physiology, 1998, 274, C1065-C1074.	2.1	102
7	A Single Amino Acid Determines Lysophospholipid Specificity of the S1P1 (EDG1) and LPA1 (EDG2) Phospholipid Growth Factor Receptors. Journal of Biological Chemistry, 2001, 276, 49213-49220.	1.6	99
8	Sphingosylphosphocholine is a naturally occurring lipid mediator in blood plasma: a possible role in regulating cardiac function via sphingolipid receptors. Biochemical Journal, 2001, 355, 189.	1.7	94
9	Dual coding in alternative reading frames correlates with intrinsic protein disorder. Proceedings of the United States of America, 2010, 107, 5429-5434.	3.3	92
10	Photolysis of intracellular caged sphingosine-1-phosphate causes Ca2+mobilization independently of G-protein-coupled receptors. FEBS Letters, 2003, 554, 443-449.	1.3	87
11	Fatty Alcohol Phosphates are Subtype-Selective Agonists and Antagonists of Lysophosphatidic Acid Receptors. Molecular Pharmacology, 2003, 63, 1032-1042.	1.0	85
12	Neonatal FcR Overexpression Boosts Humoral Immune Response in Transgenic Mice. Journal of Immunology, 2011, 186, 959-968.	0.4	65
13	The phospholipase A1 activity of lysophospholipase A-I links platelet activation to LPA production during blood coagulation. Journal of Lipid Research, 2011, 52, 958-970.	2.0	54
14	Enhanced association of mutant triosephosphate isomerase to red cell membranes and to brain microtubules. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1026-1031.	3.3	52
15	Identification of the Hydrophobic Ligand Binding Pocket of the S1P1 Receptor. Journal of Biological Chemistry, 2007, 282, 2374-2385.	1.6	49
16	Identification of a Novel Growth Factor-like Lipid, 1-O-cis-Alk-1′-enyl-2-lyso-sn-glycero-3-phosphate (Alkenyl-GP) That Is Present in Commercial Sphingolipid Preparations. Journal of Biological Chemistry, 1998, 273, 13461-13468.	1.6	47
17	Regulation of the Equilibrium between Closed and Open Conformations of Annexin A2 by N-Terminal Phosphorylation and S100A4-Binding. Structure, 2017, 25, 1195-1207.e5.	1.6	42
18	A new potent calmodulin antagonist with arylalkylamine structure: crystallographic, spectroscopic and functional studies. Journal of Molecular Biology, 2000, 297, 747-755.	2.0	40

Karoly Liliom

#	Article	IF	CITATIONS
19	Organization-dependent effects of toxic bivalent ions. FEBS Journal, 2000, 267, 4731-4739.	0.2	35
20	Stereochemical properties of lysophosphatidic acid receptor activation and metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1582, 295-308.	1.2	33
21	The Role of the Conserved Glycines of ATP-binding Cassette Signature Motifs of MRP1 in the Communication between the Substrate-binding Site and the Catalytic Centers. Journal of Biological Chemistry, 2004, 279, 41670-41678.	1.6	32
22	Mechanism of Lysophosphatidic Acid-Induced Amyloid Fibril Formation of β ₂ -Microglobulin <i>in Vitro</i> under Physiological Conditions. Biochemistry, 2009, 48, 5689-5699.	1.2	29
23	Combined Enhancement of Microtubule Assembly and Glucose Metabolism in Neuronal Systems in Vitro: Decreased Sensitivity to Copper Toxicity. Biochemical and Biophysical Research Communications, 1999, 264, 605-610.	1.0	26
24	Farnesyl phosphates are endogenous ligands of lysophosphatidic acid receptors: Inhibition of LPA GPCR and activation of PPARs. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 1506-1514.	1.2	24
25	Anti-calmodulin potency of indol alkaloids in in vitro systems. European Journal of Pharmacology, 1995, 291, 73-82.	2.7	23
26	Quantitative evaluation of indirect ELISA effect of calmodulin antagonists on antibody binding to calmodulin. Journal of Immunological Methods, 1991, 143, 119-125.	0.6	20
27	GAP43 shows partial co-localisation but no strong physical interaction with prolyl oligopeptidase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 2162-2176.	1.1	20
28	Pharmacological Characterization of Phospholipid Growthâ€Factor Receptors. Annals of the New York Academy of Sciences, 2000, 905, 34-53.	1.8	18
29	Sphingosylphosphorylcholine as a novel calmodulin inhibitor. Biochemical Journal, 2008, 410, 427-437.	1.7	18
30	Dissociation of Calmodulin-Target Peptide Complexes by the Lipid Mediator Sphingosylphosphorylcholine. Journal of Biological Chemistry, 2010, 285, 1799-1808.	1.6	18
31	Soluble components of the flagellar export apparatus, Flil, FliJ, and FliH, do not deliver flagellin, the major filament protein, from the cytosol to the export gate. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2414-2423.	1.9	16
32	Selectivity of kinases on the activation of tenofovir, an anti-HIV agent. European Journal of Pharmaceutical Sciences, 2013, 48, 307-315.	1.9	15
33	New cholesterol-specific antibodies remodel HIV-1 target cells' surface and inhibit their in vitro virus production. Journal of Lipid Research, 2010, 51, 286-296.	2.0	13
34	Local anesthetics inhibit receptors coupled to phosphoinositide signaling in. Pflugers Archiv European Journal of Physiology, 1997, 433, 478.	1.3	12
35	Nucleotide promiscuity of 3-phosphoglycerate kinase is in focus: implications for the design of better anti-HIV analogues. Molecular BioSystems, 2011, 7, 1863.	2.9	12
36	Synthesis and Properties of a Photoactivatable Analogue of Psychosine (βâ€Galactosylsphingosine). ChemMedChem, 2010, 5, 682-686.	1.6	11

KAROLY LILIOM

#	Article	IF	CITATIONS
37	The lipid mediator lysophosphatidic acid induces folding of disordered peptides with basic amphipathic character into rare conformations. Scientific Reports, 2018, 8, 14499.	1.6	10
38	Nucleotides and transported substrates modulate different steps of the ATPase catalytic cycle of MRP1 multidrug transporter. Biochemical Journal, 2004, 380, 549-560.	1.7	8
39	Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipidâ€protein interactions. FASEB Journal, 2010, 24, 3829-3839.	0.2	8
40	The SH3 domain of Caskin1 binds to lysophosphatidic acid suggesting a direct role for the lipid in intracellular signaling. Cellular Signalling, 2017, 32, 66-75.	1.7	8
41	Sphingosylphosphorylcholine Is a <i>Bona Fide</i> Mediator Regulating Heart Rate. Annals of the New York Academy of Sciences, 2000, 905, 308-310.	1.8	6
42	Regulation of ryanodine receptors by sphingosylphosphorylcholine: Involvement of both calmodulin-dependent and -independent mechanisms. Biochemical and Biophysical Research Communications, 2010, 401, 281-286.	1.0	6
43	Competitive inhibition of the classical complement pathway using exogenous single-chain C1q recognition proteins. Journal of Biological Chemistry, 2022, 298, 102113.	1.6	5
44	Unbinding of Hyaluronan Accelerates the Enzymatic Activity of Bee Hyaluronidase. Journal of Biological Chemistry, 2011, 286, 35699-35707.	1.6	4
45	Comparison of ligand binding and conformational stability of human calmodulin with its homolog from the malaria parasite <i>Plasmodium falciparum</i> . FASEB BioAdvances, 2020, 2, 489-505.	1.3	4
46	Solution NMR Structure of the SH3 Domain of Human Caskin1 Validates the Lack of a Typical Peptide Binding Groove and Supports a Role in Lipid Mediator Binding. Cells, 2021, 10, 173.	1.8	3
47	Phospholipid Growth Factors: Identification and Mechanism of Action. , 2020, , 51-81.		3
48	Pathogenic D76N Variant of \hat{l}^22 -Microglobulin: Synergy of Diverse Effects in Both the Native and Amyloid States. Biology, 2021, 10, 1197.	1.3	3
49	Absolute Quantitation of Serum Antibody Reactivity Using the Richards Growth Model for Antigen Microspot Titration. Sensors, 2022, 22, 3962.	2.1	2
50	Probing calmodulin - peptide interactions of different species with the same target peptide. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s203-s203.	0.0	1
51	Contributory presentations/posters. Journal of Biosciences, 1999, 24, 33-198.	0.5	Ο
52	New Aspects of Lipid-Protein Interactions Revealed by Calmodulin Binding to the Lipid Mediator Sphingosylphosphorylcholine. Biophysical Journal, 2010, 98, 675a.	0.2	0