Nicolas Walpen

List of Publications by Citations

Source: https://exaly.com/author-pdf/5830597/nicolas-walpen-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

11	232	7	11
papers	citations	h-index	g-index
11	366	10.4	3.79
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
11	Electron-Donating Phenolic and Electron-Accepting Quinone Moieties in Peat Dissolved Organic Matter: Quantities and Redox Transformations in the Context of Peat Biogeochemistry. <i>Environmental Science & Environmental Scien</i>	10.3	57
10	Quantification of Phenolic Antioxidant Moieties in Dissolved Organic Matter by Flow-Injection Analysis with Electrochemical Detection. <i>Environmental Science & Environmental </i>	10.3	49
9	Controlling factors in the rates of oxidation of anilines and phenols by triplet methylene blue in aqueous solution. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 3233-43	2.8	33
8	Two analytical approaches quantifying the electron donating capacities of dissolved organic matter to monitor its oxidation during chlorination and ozonation. <i>Water Research</i> , 2018 , 144, 677-689	12.5	29
7	Molecular-Level Transformation of Dissolved Organic Matter during Oxidation by Ozone and Hydroxyl Radical. <i>Environmental Science & Environmental Scie</i>	10.3	25
6	Quantification of the electron donating capacity and UV absorbance of dissolved organic matter during ozonation of secondary wastewater effluent by an assay and an automated analyzer. <i>Water Research</i> , 2020 , 185, 116235	12.5	15
5	Redox Properties of Pyrogenic Dissolved Organic Matter (pyDOM) from Biomass-Derived Chars. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	7
4	Oxidation of Reduced Peat Particulate Organic Matter by Dissolved Oxygen: Quantification of Apparent Rate Constants in the Field. <i>Environmental Science & Environmental Scien</i>	10.3	7
3	Oxidant-reactive carbonous moieties in dissolved organic matter: Selective quantification by oxidative titration using chlorine dioxide and ozone. <i>Water Research</i> , 2021 , 207, 117790	12.5	4
2	Long-Term Warming Decreases Redox Capacity of Soil Organic Matter. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 92-97	11	4
1	Application of UV absorbance and electron-donating capacity as surrogates for micropollutant abatement during full-scale ozonation of secondary-treated wastewater. <i>Water Research</i> , 2021 , 209, 117858	12.5	2