Caoxing Huang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/58304/caoxing-huang-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,492 159 35 50 h-index g-index citations papers 6.33 175 5,029 7.3 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
159	Co-production of amino acid-rich xylooligosaccharide and single-cell protein from paper mulberry by autohydrolysis and fermentation technologies. 2022 , 15, 1		1
158	Co-production of xylooligosaccharides and glucose from birch sawdust by hot water pretreatment and enzymatic hydrolysis <i>Bioresource Technology</i> , 2022 , 348, 126795	11	3
157	Facile adjustment on cellulose nanocrystals composite films with glycerol and benzyl acrylate copolymer for enhanced UV shielding property <i>International Journal of Biological Macromolecules</i> , 2022 , 204, 41-41	7.9	O
156	A honeycomb-like hydrogel in-situ constructed by Streptococcus zooepidemicus and TOCN for the proliferation of bacteria <i>Carbohydrate Polymers</i> , 2022 , 281, 119099	10.3	0
155	Re-dispersible chitin nanofibrils with improved stability in green solvents for fabricating hydrophobic aerogels <i>Carbohydrate Polymers</i> , 2022 , 283, 119138	10.3	1
154	Advances in Biosensing and Environmental Monitoring Based on Electrospun Nanofibers. <i>Advanced Fiber Materials</i> , 2022 , 4, 404-435	10.9	13
153	In-situ lignin modification with polyethylene glycol-epoxides to boost enzymatic hydrolysis of combined-pretreated masson pine. <i>Bioresource Technology</i> , 2022 , 344, 126315	11	1
152	Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics. <i>Renewable and Sustainable Energy Reviews</i> , 2022 , 154, 111822	16.2	47
151	Antiviral/antibacterial biodegradable cellulose nonwovens as environmentally friendly and bioprotective materials with potential to minimize microplastic pollution. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127391	12.8	9
150	A systematic comparison of neurotoxicity of bisphenol A and its derivatives in zebrafish. <i>Science of the Total Environment</i> , 2022 , 805, 150210	10.2	6
149	Using One-pot Fermentation Technology to Prepare Enzyme Cocktail to Sustainably Produce Low Molecular Weight Galactomannans from Sesbania cannabina Seeds <i>Applied Biochemistry and Biotechnology</i> , 2022 , 1	3.2	
148	The immunomodulatory activity of degradation products of Sesbania cannabina galactomannan with different molecular weights <i>International Journal of Biological Macromolecules</i> , 2022 ,	7.9	1
147	A structure-activity understanding of the interaction between lignin and various cellulase domains <i>Bioresource Technology</i> , 2022 , 127042	11	3
146	Revealing the mechanism of lignin re-polymerization inhibitor in acidic pretreatment and its impact on enzymatic hydrolysis. <i>Industrial Crops and Products</i> , 2022 , 179, 114631	5.9	0
145	Efficient separation of bagasse lignin by freeze-thaw-assisted p-toluenesulfonic acid pretreatment <i>Bioresource Technology</i> , 2022 , 351, 126951	11	4
144	Lignin fractionation to realize the comprehensive elucidation of structure-inhibition relationship of lignins in enzymatic hydrolysis <i>Bioresource Technology</i> , 2022 , 355, 127255	11	1
143	Highly selective separation of eucalyptus hemicellulose by salicylic acid treatment with both aromatic and hydroxy acids <i>Bioresource Technology</i> , 2022 , 355, 127304	11	O

(2021-2022)

142	Sustainable lignin and lignin-derived compounds as potential therapeutic agents for degenerative orthopaedic diseases: A systemic review. <i>International Journal of Biological Macromolecules</i> , 2022 , 212, 547-560	7.9	1	
141	All-natural and biocompatible cellulose nanocrystals films with tunable supramolecular structure. <i>International Journal of Biological Macromolecules</i> , 2021 ,	7.9	4	
140	Valorization of Chinese hickory shell as novel sources for the efficient production of xylooligosaccharides. <i>Biotechnology for Biofuels</i> , 2021 , 14, 226	7.8	2	
139	Protective Effects of Lignin-Carbohydrate Complexes from Wheat Stalk against Bisphenol a Neurotoxicity in Zebrafish via Oxidative Stress. <i>Antioxidants</i> , 2021 , 10,	7.1	2	
138	Preparation of di- and tri- galacturonic acid by coupling hydrothermal pretreatment and enzymatic hydrolysis. <i>Process Biochemistry</i> , 2021 , 102, 180-185	4.8	1	
137	Natural surfactant-aided dilute sulfuric acid pretreatment of waste wheat straw to enhance enzymatic hydrolysis efficiency. <i>Bioresource Technology</i> , 2021 , 324, 124651	11	27	
136	The and Antioxidant and Immunomodulatory Activity of Incomplete Degradation Products of Hemicellulosic Polysaccharide (Galactomannan) From. <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 679558	5.8	2	
135	Synthesis and application of an environmental epoxy plasticizer with phthalate-like structure based on tung oil and cardanol for poly(vinyl chloride). <i>Journal of Applied Polymer Science</i> , 2021 , 138, 50809	2.9	6	
134	Evaluating the bio-application of biomacromolecule of lignin-carbohydrate complexes (LCC) from wheat straw in bone metabolism via ROS scavenging. <i>International Journal of Biological Macromolecules</i> , 2021 , 176, 13-25	7.9	47	
133	Enhancing the enzymatic digestibility of bamboo residues by biphasic phenoxyethanol-acid pretreatment. <i>Bioresource Technology</i> , 2021 , 325, 124691	11	51	
132	Understanding the effects of different residual lignin fractions in acid-pretreated bamboo residues on its enzymatic digestibility. <i>Biotechnology for Biofuels</i> , 2021 , 14, 143	7.8	35	
131	Effects of seleno-Sesbania canabina galactomannan on anti-oxidative and immune function of macrophage. <i>Carbohydrate Polymers</i> , 2021 , 261, 117833	10.3	5	
130	Preparation of Lignin-Based Magnetic Adsorbent From Kraft Lignin for Adsorbing the Congo Red. <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 691528	5.8	6	
129	Synthesis, optical properties, determination and imaging in living cells and bamboo of cinnamaldehyde derivatives. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2021 , 255, 119730	4.4	O	
128	Synthesis of cationic bacterial cellulose using a templated metal phenolic network for antibacterial applications. <i>Cellulose</i> , 2021 , 28, 9283-9296	5.5	1	
127	Comparative study on enzymatic digestibility of acid-pretreated poplar and larch based on a comprehensive analysis of the lignin-derived recalcitrance. <i>Bioresource Technology</i> , 2021 , 319, 124225	11	23	
126	A covalently cross-linked hyaluronic acid/bacterial cellulose composite hydrogel for potential biological applications. <i>Carbohydrate Polymers</i> , 2021 , 252, 117123	10.3	15	
125	Titanium dioxide nanoparticle affects motor behavior, neurodevelopment and axonal growth in zebrafish (Danio rerio) larvae. <i>Science of the Total Environment</i> , 2021 , 754, 142315	10.2	19	

124	Green solvent pretreatment for enhanced production of sugars and antioxidative lignin from poplar. <i>Bioresource Technology</i> , 2021 , 321, 124471	11	25
123	Fabrication of hydrophobic and high-strength packaging films based on the esterification modification of galactomannan. <i>International Journal of Biological Macromolecules</i> , 2021 , 167, 1221-12	2 9 ^{.9}	3
122	The Increase of Incomplete Degradation Products of Galactomannan Production by Synergetic Hydrolysis of EMannanase and EGalactosidase. <i>Applied Biochemistry and Biotechnology</i> , 2021 , 193, 405-4	1 ^{3.2}	2
121	Dietary Mannanoligosaccharide Supplementation Improves Growth Performance, Intestinal Integrity, Serum Immunity, and Antioxidant Capacity of Partridge Shank Chickens. <i>Journal of Poultry Science</i> , 2021 , 58, 147-153	1.6	
120	Fabrication of anti-bacterial, hydrophobic and UV resistant galactomannan-zinc oxide nanocomposite films. <i>Polymer</i> , 2021 , 215, 123412	3.9	5
119	Melanin-Inspired Design: Preparing Sustainable Photothermal Materials from Lignin for Energy Generation. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 7600-7607	9.5	28
118	Production performance, egg quality, plasma biochemical constituents and lipid metabolites of aged laying hens supplemented with incomplete degradation products of galactomannan. <i>Poultry Science</i> , 2021 , 100, 101296	3.9	2
117	Promoting enzymatic hydrolysis of aggregated bamboo crystalline cellulose by fast microwave-assisted dicarboxylic acid deep eutectic solvents pretreatments. <i>Bioresource Technology</i> , 2021 , 333, 125122	11	12
116	Ultra-strong hydroxypropyl cellulose/polyvinyl alcohol composite hydrogel by combination of triple-network and mechanical training. <i>International Journal of Biological Macromolecules</i> , 2021 , 184, 200-208	7.9	9
115	Unlocking the secret of lignin-enzyme interactions: Recent advances in developing state-of-the-art analytical techniques. <i>Biotechnology Advances</i> , 2021 , 107830	17.8	13
114	Insight in the Recent Application of Polyphenols From Biomass. <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 753898	5.8	6
113	Unveiling the structural properties of water-soluble lignin from gramineous biomass by autohydrolysis and its functionality as a bioactivator (anti-inflammatory and antioxidative). <i>International Journal of Biological Macromolecules</i> , 2021 , 191, 1087-1095	7.9	11
112	A method for quantitative characterization of incomplete degradation products of polygalacturonic acid. <i>International Journal of Biological Macromolecules</i> , 2021 , 188, 343-349	7.9	О
111	Preparing printable bacterial cellulose based gelatin gel to promote in vivo bone regeneration. <i>Carbohydrate Polymers</i> , 2021 , 270, 118342	10.3	22
110	Bioinspired manufacturing of oriented polysaccharides scaffolds for strong, optical haze and anti-UV/bacterial membranes. <i>Carbohydrate Polymers</i> , 2021 , 270, 118328	10.3	2
109	Effects of the Hofmeister anion series salts on the rheological properties of Sesbania cannabina galactomannan. <i>International Journal of Biological Macromolecules</i> , 2021 , 188, 350-358	7.9	
108	TEMPO-oxidized nanochitin based hydrogels and inter-structure tunable cryogels prepared by sequential chemical and physical crosslinking. <i>Carbohydrate Polymers</i> , 2021 , 272, 118495	10.3	3
107	Understanding the relationship between the structural properties of lignin and their biological activities. <i>International Journal of Biological Macromolecules</i> , 2021 , 190, 291-300	7.9	20

(2020-2021)

106	High efficiency and clean separation of eucalyptus components by glycolic acid pretreatment. <i>Bioresource Technology</i> , 2021 , 341, 125757	11	8
105	Efficient production of xylooligosaccharides rich in xylobiose and xylotriose from poplar by hydrothermal pretreatment coupled with post-enzymatic hydrolysis. <i>Bioresource Technology</i> , 2021 , 342, 125955	11	6
104	Synergistic effects of hydrothermal and deep eutectic solvent pretreatment on co-production of xylo-oligosaccharides and enzymatic hydrolysis of poplar. <i>Bioresource Technology</i> , 2021 , 341, 125787	11	13
103	Revealing the influence of metallic chlorides pretreatment on chemical structures of lignin and enzymatic hydrolysis of waste wheat straw. <i>Bioresource Technology</i> , 2021 , 342, 125983	11	1
102	Comprehensive understanding of the effects of metallic cations on enzymatic hydrolysis of humic acid-pretreated waste wheat straw. <i>Biotechnology for Biofuels</i> , 2021 , 14, 25	7.8	4
101	Tuning the cellulose nanocrystal alignments for supramolecular assembly of chiral nematic films with highly efficient UVB shielding capability. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 8493-8501	7.1	24
100	Increasing the Carbohydrate Output of Bamboo Using a Combinatorial Pretreatment. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 7380-7393	8.3	20
99	Biomimetic galactomannan/bentonite/graphene oxide film with superior mechanical and fire retardant properties by borate cross-linking. <i>Carbohydrate Polymers</i> , 2020 , 245, 116508	10.3	12
98	Facilitating enzymatic digestibility of larch by in-situ lignin modification during combined acid and alkali pretreatment. <i>Bioresource Technology</i> , 2020 , 311, 123517	11	18
97	Promoting enzymatic saccharification of organosolv-pretreated poplar sawdust by saponin-rich tea seed waste. <i>Bioprocess and Biosystems Engineering</i> , 2020 , 43, 1999-2007	3.7	7
96	Using lignin as the precursor to synthesize Fe3O4@lignin composite for preparing electromagnetic wave absorbing lignin-phenol-formaldehyde adhesive. <i>Industrial Crops and Products</i> , 2020 , 154, 112638	5.9	56
95	An integrated process to produce prebiotic xylooligosaccharides by autohydrolysis, nanofiltration and endo-xylanase from alkali-extracted xylan. <i>Bioresource Technology</i> , 2020 , 314, 123685	11	21
94	Insight into understanding the performance of deep eutectic solvent pretreatment on improving enzymatic digestibility of bamboo residues. <i>Bioresource Technology</i> , 2020 , 306, 123163	11	136
93	Humic acid-assisted autohydrolysis of waste wheat straw to sustainably improve enzymatic hydrolysis. <i>Bioresource Technology</i> , 2020 , 306, 123103	11	16
92	Deconstruction of oriented crystalline cellulose by novel levulinic acid based deep eutectic solvents pretreatment for improved enzymatic accessibility. <i>Bioresource Technology</i> , 2020 , 305, 123025	11	50
91	Investigation of Synthesis Mechanism, Optimal Hot-Pressing Conditions, and Curing Behavior of Sucrose and Ammonium Dihydrogen Phosphate Adhesive. <i>Polymers</i> , 2020 , 12,	4.5	8
90	Incorporating Lignin into Polyethylene Glycol Enhanced Its Performance for Promoting Enzymatic Hydrolysis of Hardwood. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 1797-1804	8.3	11
89	Utilization of enzymatic hydrolysate from corn stover as a precursor to synthesize an eco-friendly adhesive for plywood II: investigation of appropriate manufacturing conditions, curing behavior, and adhesion mechanism. <i>Journal of Wood Science</i> , 2020 , 66,	2.4	7

88	Organosolv lignin properties and their effects on enzymatic hydrolysis. <i>BioResources</i> , 2020 , 15, 8909-8	924 3	1
87	Investigation of the effect of lignin/pseudo-lignin on enzymatic hydrolysis by Quartz Crystal Microbalance. <i>Industrial Crops and Products</i> , 2020 , 157, 112927	5.9	16
86	Novel approach to produce biomass-derived oligosaccharides simultaneously by recombinant endoglucanase from Trichoderma reesei. <i>Enzyme and Microbial Technology</i> , 2020 , 134, 109481	3.8	0
85	Characterization and Application of Lignin Carbohydrate Complexes from Lignocellulosic Materials as Antioxidants for Scavenging In Vitro and In Vivo Reactive Oxygen Species. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 256-266	8.3	140
84	Sunlight-Driven Biomass Photorefinery for Coproduction of Sustainable Hydrogen and Value-Added Biochemicals. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 15772-15781	8.3	14
83	Actuating, shape reconstruction, and reinforcement of galactomannan-based hydrogels by coordination bonds induced metal ions capture. <i>International Journal of Biological Macromolecules</i> , 2020 , 165, 2721-2730	7.9	4
82	Development of a novel polysaccharide-based iron oxide nanoparticle to prevent iron accumulation-related osteoporosis by scavenging reactive oxygen species. <i>International Journal of Biological Macromolecules</i> , 2020 , 165, 1634-1645	7.9	15
81	Water cast film formability of sugarcane bagasse xylans favored by side groups. <i>Cellulose</i> , 2020 , 27, 73	307 5 .7 3 2	016
80	Unrevealing model compounds of soil conditioners impacts on the wheat straw autohydrolysis efficiency and enzymatic hydrolysis. <i>Biotechnology for Biofuels</i> , 2020 , 13, 122	7.8	1
79	Procuring biologically active galactomannans from spent coffee ground (SCG) by autohydrolysis and enzymatic hydrolysis. <i>International Journal of Biological Macromolecules</i> , 2020 , 149, 572-580	7.9	35
79 78		7.9	35 8
	and enzymatic hydrolysis. <i>International Journal of Biological Macromolecules</i> , 2020 , 149, 572-580 A facile quantitative characterization method of incomplete degradation products of		
78	and enzymatic hydrolysis. <i>International Journal of Biological Macromolecules</i> , 2020 , 149, 572-580 A facile quantitative characterization method of incomplete degradation products of galactomannan by ethanol fractional precipitation. <i>Carbohydrate Polymers</i> , 2020 , 250, 116951 Removal of fermentation inhibitors from pre-hydrolysis liquor using polystyrene divinylbenzene	10.3	8
78 77	A facile quantitative characterization method of incomplete degradation products of galactomannan by ethanol fractional precipitation. <i>Carbohydrate Polymers</i> , 2020 , 250, 116951 Removal of fermentation inhibitors from pre-hydrolysis liquor using polystyrene divinylbenzene resin. <i>Biotechnology for Biofuels</i> , 2020 , 13, 188 Isolation and Identification of a Novel Anti-protein Aggregation Activity of Lignin-Carbohydrate	7.8	8 35
78 77 76	A facile quantitative characterization method of incomplete degradation products of galactomannan by ethanol fractional precipitation. <i>Carbohydrate Polymers</i> , 2020 , 250, 116951 Removal of fermentation inhibitors from pre-hydrolysis liquor using polystyrene divinylbenzene resin. <i>Biotechnology for Biofuels</i> , 2020 , 13, 188 Isolation and Identification of a Novel Anti-protein Aggregation Activity of Lignin-Carbohydrate Complex From Leaves. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 573991 Procuring the nano-scale lignin in prehydrolyzate as ingredient to prepare cellulose nanofibril	10.37.85.8	8 35 33
78 77 76 75	A facile quantitative characterization method of incomplete degradation products of galactomannan by ethanol fractional precipitation. <i>Carbohydrate Polymers</i> , 2020 , 250, 116951 Removal of fermentation inhibitors from pre-hydrolysis liquor using polystyrene divinylbenzene resin. <i>Biotechnology for Biofuels</i> , 2020 , 13, 188 Isolation and Identification of a Novel Anti-protein Aggregation Activity of Lignin-Carbohydrate Complex From Leaves. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 573991 Procuring the nano-scale lignin in prehydrolyzate as ingredient to prepare cellulose nanofibril composite film with multiple functions. <i>Cellulose</i> , 2020 , 27, 9355-9370 Preparation of Graphene-Like Porous Carbons With Enhanced Thermal Conductivities From Lignin Nano-particles by Combining Hydrothermal Carbonization and Pyrolysis. <i>Frontiers in Energy</i>	7.8 5.8 5.5	8 35 33 62
78 77 76 75 74	A facile quantitative characterization method of incomplete degradation products of galactomannan by ethanol fractional precipitation. <i>Carbohydrate Polymers</i> , 2020 , 250, 116951 Removal of fermentation inhibitors from pre-hydrolysis liquor using polystyrene divinylbenzene resin. <i>Biotechnology for Biofuels</i> , 2020 , 13, 188 Isolation and Identification of a Novel Anti-protein Aggregation Activity of Lignin-Carbohydrate Complex From Leaves. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 573991 Procuring the nano-scale lignin in prehydrolyzate as ingredient to prepare cellulose nanofibril composite film with multiple functions. <i>Cellulose</i> , 2020 , 27, 9355-9370 Preparation of Graphene-Like Porous Carbons With Enhanced Thermal Conductivities From Lignin Nano-particles by Combining Hydrothermal Carbonization and Pyrolysis. <i>Frontiers in Energy Research</i> , 2020 , 8, Coupling Biocompatible Au Nanoclusters and Cellulose Nanofibrils to Prepare the Antibacterial	7.8 5.8 5.5 3.8	8 35 33 62 20

(2019-2020)

70	Continuous Bioconversion of Oleuropein from Olive Leaf Extract to Produce the Bioactive Product Hydroxytyrosol Using Carrier-Immobilized Enzyme. <i>Applied Biochemistry and Biotechnology</i> , 2020 , 190, 148-165	3.2	9
69	Isolation of the Flavonoid from Bamboo Residues and Its Application as Metal Ion Sensor in Vitro. <i>Polymers</i> , 2019 , 11,	4.5	13
68	Nacre-inspired hemicelluloses paper with fire retardant and gas barrier properties by self-assembly with bentonite nanosheets. <i>Carbohydrate Polymers</i> , 2019 , 225, 115219	10.3	18
67	Enhancing enzymatic digestibility of waste wheat straw by presoaking to reduce the ash-influencing effect on autohydrolysis. <i>Biotechnology for Biofuels</i> , 2019 , 12, 222	7.8	14
66	Improving enzymatic hydrolysis of acid-pretreated bamboo residues using amphiphilic surfactant derived from dehydroabietic acid. <i>Bioresource Technology</i> , 2019 , 293, 122055	11	87
65	Construction of arabinogalactans/selenium nanoparticles composites for enhancement of the antitumor activity. <i>International Journal of Biological Macromolecules</i> , 2019 , 128, 444-451	7.9	35
64	Revealing the effects of centuries of ageing on the chemical structural features of lignin in archaeological fir woods. <i>New Journal of Chemistry</i> , 2019 , 43, 3520-3528	3.6	36
63	Co-production of xylooligosaccharides and fermentable sugars from poplar through acetic acid pretreatment followed by poly (ethylene glycol) ether assisted alkali treatment. <i>Bioresource Technology</i> , 2019 , 288, 121569	11	40
62	Coupling the post-extraction process to remove residual lignin and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues. <i>Bioresource Technology</i> , 2019 , 285, 121355	11	176
61	The effects of exogenous ash on the autohydrolysis and enzymatic hydrolysis of wheat straw. <i>Bioresource Technology</i> , 2019 , 286, 121411	11	12
60	Sulfated modification of arabinogalactans from Larix principis-rupprechtii and their antitumor activities. <i>Carbohydrate Polymers</i> , 2019 , 215, 207-212	10.3	14
59	Synthesis of Carbon Quantum Dot Nanoparticles Derived from Byproducts in Bio-Refinery Process for Cell Imaging and In Vivo Bioimaging. <i>Nanomaterials</i> , 2019 , 9,	5.4	83
58	Improving the enzymatic hydrolysis of larch by coupling water pre-extraction with alkaline hydrogen peroxide post-treatment and adding enzyme cocktail. <i>Bioresource Technology</i> , 2019 , 285, 121	322	6
57	New strategy to elucidate the positive effects of extractable lignin on enzymatic hydrolysis by quartz crystal microbalance with dissipation. <i>Biotechnology for Biofuels</i> , 2019 , 12, 57	7.8	27
56	A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from bamboo prehydrolyzate. <i>Biotechnology for Biofuels</i> , 2019 , 12, 189	7.8	130
55	Bio-inspired nanocomposite by layer-by-layer coating of chitosan/hyaluronic acid multilayers on a hard nanocellulose-hydroxyapatite matrix. <i>Carbohydrate Polymers</i> , 2019 , 222, 115036	10.3	23
54	Effects of Mannanoligosaccharide Supplementation on the Growth Performance, Immunity, and Oxidative Status of Partridge Shank Chickens. <i>Animals</i> , 2019 , 9,	3.1	8
53	Production of dissolving grade pulp from tobacco stalk through SO2-ethanol-water fractionation, alkaline extraction, and bleaching processes. <i>BioResources</i> , 2019 , 14, 5544-5558	1.3	15

52	Synthesis and Characterization of Sucrose and Ammonium Dihydrogen Phosphate (SADP) Adhesive for Plywood. <i>Polymers</i> , 2019 , 11,	4.5	22
51	Further Exploration of Sucrose-Citric Acid Adhesive: Investigation of Optimal Hot-Pressing Conditions for Plywood and Curing Behavior. <i>Polymers</i> , 2019 , 11,	4.5	22
50	Synthesis and Characterization of an Antioxidative Galactomannan?Iron(III) Complex from Seed. <i>Polymers</i> , 2018 , 11,	4.5	8
49	Elucidation of structure-inhibition relationship of monosaccharides derived pseudo-lignin in enzymatic hydrolysis. <i>Industrial Crops and Products</i> , 2018 , 113, 368-375	5.9	34
48	Quantitative lipidomic insights in the inhibitory response of Pichia stipitis to vanillin, 5-hydroxymethylfurfural, and acetic acid. <i>Biochemical and Biophysical Research Communications</i> , 2018 , 497, 7-12	3.4	3
47	Efficient bioconversion of oleuropein from olive leaf extract to antioxidant hydroxytyrosol by enzymatic hydrolysis and high-temperature degradation. <i>Biotechnology and Applied Biochemistry</i> , 2018 , 65, 680-689	2.8	11
46	Improving enzymatic hydrolysis efficiency of wheat straw through sequential autohydrolysis and alkaline post-extraction. <i>Bioresource Technology</i> , 2018 , 251, 374-380	11	42
45	Influence of sulfur dioxide-ethanol-water pretreatment on the physicochemical properties and enzymatic digestibility of bamboo residues. <i>Bioresource Technology</i> , 2018 , 263, 17-24	11	47
44	A novel cold-adapted esterase from Enterobacter cloacae: Characterization and improvement of its activity and thermostability via the site of Tyr193Cys. <i>Microbial Cell Factories</i> , 2018 , 17, 45	6.4	7
43	Isolation, characterization and in vitro anticancer activity of an aqueous galactomannan from the seed of Sesbania cannabina. <i>International Journal of Biological Macromolecules</i> , 2018 , 113, 1241-1247	7.9	21
42	Unveiling the Structural Properties of Lignin Carbohydrate Complexes in Bamboo Residues and Its Functionality as Antioxidants and Immunostimulants. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 12522-12531	8.3	61
41	Use of metal chlorides during waste wheat straw autohydrolysis to overcome the self-buffering effect. <i>Bioresource Technology</i> , 2018 , 268, 259-265	11	19
40	Effects of Sulfuric Acid on the Curing Behavior and Bonding Performance of Tannin?Sucrose Adhesive. <i>Polymers</i> , 2018 , 10,	4.5	18
39	Preparation of Lignosulfonates from Biorefinery Lignins by Sulfomethylation and Their Application as a Water Reducer for Concrete. <i>Polymers</i> , 2018 , 10,	4.5	46
38	Enhanced enzymatic digestibility of mixed wood sawdust by lignin modification with naphthol derivatives during dilute acid pretreatment. <i>Bioresource Technology</i> , 2018 , 269, 18-24	11	44
37	Characterization of arabinogalactans from Larix principis-rupprechtii and their effects on NO production by macrophages. <i>Carbohydrate Polymers</i> , 2018 , 200, 408-415	10.3	25
36	Hypolipidemic activities of partially deacetylated Ethitin nanofibers/nanowhiskers in mice. <i>Food and Nutrition Research</i> , 2018 , 62,	3.1	8
35	Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue. <i>Bioresource Technology</i> , 2018 , 250, 365-373	11	28

(2016-2018)

34	Properties by a Facile Vacuum/Pressure Impregnation Method. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 1000-1008	8.3	67	
33	Selective aminolysis of acetylated lignin: Toward simultaneously improving thermal-oxidative stability and maintaining mechanical properties of polypropylene. <i>International Journal of Biological Macromolecules</i> , 2018 , 108, 775-781	7.9	16	
32	Relative fermentation of oligosaccharides from human milk and plants by gut microbes. <i>European Food Research and Technology</i> , 2017 , 243, 133-146	3.4	16	
31	Regular enzyme recovery enhances cellulase production by Trichoderma reesei in fed-batch culture. <i>Biotechnology Letters</i> , 2017 , 39, 1493-1498	3	2	
30	An integrated process to produce bio-ethanol and xylooligosaccharides rich in xylobiose and xylotriose from high ash content waste wheat straw. <i>Bioresource Technology</i> , 2017 , 241, 228-235	11	50	
29	Characterization of Kraft Lignin Fractions Obtained by Sequential Ultrafiltration and Their Potential Application as a Biobased Component in Blends with Polyethylene. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 11770-11779	8.3	58	
28	Lignin Alkylation Enhances Enzymatic Hydrolysis of Lignocellulosic Biomass. <i>Energy & amp; Fuels</i> , 2017 , 31, 12317-12326	4.1	42	
27	Enhanced enzymatic saccharification of corn stover by in situ modification of lignin with poly (ethylene glycol) ether during low temperature alkali pretreatment. <i>Bioresource Technology</i> , 2017 , 244, 92-99	11	35	
26	Relations Between Moso Bamboo Surface Properties Pretreated by Kraft Cooking and Dilute Acid with Enzymatic Digestibility. <i>Applied Biochemistry and Biotechnology</i> , 2017 , 183, 1526-1538	3.2	7	
25	Fungal chitosan production using xylose rich of corn stover prehydrolysate by Rhizopus oryzae. <i>Biotechnology and Biotechnological Equipment</i> , 2017 , 31, 1160-1166	1.6	7	
24	Coproduction of Ethanol and Lignosulfonate From Moso Bamboo Residues by Fermentation and Sulfomethylation. <i>Waste and Biomass Valorization</i> , 2017 , 8, 965-974	3.2	15	
23	Stimulation and inhibition of enzymatic hydrolysis by organosolv lignins as determined by zeta potential and hydrophobicity. <i>Biotechnology for Biofuels</i> , 2017 , 10, 162	7.8	46	
22	Fumaric Acid Production from Alkali-Pretreated Corncob by Fed-Batch Simultaneous Saccharification and Fermentation Combined with Separated Hydrolysis and Fermentation at High Solids Loading. <i>Applied Biochemistry and Biotechnology</i> , 2017 , 181, 573-583	3.2	16	
21	Novel process for the coproduction of xylo-oligosaccharides, fermentable sugars, and lignosulfonates from hardwood. <i>Bioresource Technology</i> , 2016 , 219, 600-607	11	61	
20	Highly efficient production of D-lactic acid from chicory-derived inulin by Lactobacillus bulgaricus. <i>Bioprocess and Biosystems Engineering</i> , 2016 , 39, 1749-57	3.7	13	
19	Difference analysis of the enzymatic hydrolysis performance of acid-catalyzed steam-exploded corn stover before and after washing with water. <i>Bioprocess and Biosystems Engineering</i> , 2016 , 39, 1619-26	3.7	10	
18	Impacts of lignocellulose-derived inhibitors on L-lactic acid fermentation by Rhizopus oryzae. <i>Bioresource Technology</i> , 2016 , 203, 173-80	11	53	
17	Structural Characterization of the Lignins from the Green and Yellow Bamboo of Bamboo Culm (Phyllostachys pubescens). <i>Journal of Wood Chemistry and Technology</i> , 2016 , 36, 157-172	2	57	

16	A new magnesium bisulfite pretreatment (MBSP) development for bio-ethanol production from corn stover. <i>Bioresource Technology</i> , 2016 , 199, 188-193	11	19
15	Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain. <i>PLoS ONE</i> , 2016 , 11, e0149101	3.7	28
14	Understanding the Nonproductive Enzyme Adsorption and Physicochemical Properties of Residual Lignins in Moso Bamboo Pretreated with Sulfuric Acid and Kraft Pulping. <i>Applied Biochemistry and Biotechnology</i> , 2016 , 180, 1508-1523	3.2	48
13	Prewashing enhances the liquid hot water pretreatment efficiency of waste wheat straw with high free ash content. <i>Bioresource Technology</i> , 2016 , 219, 583-588	11	41
12	Associating cooking additives with sodium hydroxide to pretreat bamboo residues for improving the enzymatic saccharification and monosaccharides production. <i>Bioresource Technology</i> , 2015 , 193, 14	2 . 9	25
11	Facilitating the enzymatic saccharification of pulped bamboo residues by degrading the remained xylan and lignin-carbohydrates complexes. <i>Bioresource Technology</i> , 2015 , 192, 471-7	11	44
10	Minimizing inhibitors during pretreatment while maximizing sugar production in enzymatic hydrolysis through a two-stage hydrothermal pretreatment. <i>Cellulose</i> , 2015 , 22, 1253-1261	5.5	28
9	Disparate roles of solvent extractable lignin and residual bulk lignin in enzymatic hydrolysis of pretreated sweetgum. <i>RSC Advances</i> , 2015 , 5, 97966-97974	3.7	33
8	A One-Step Method for the Simultaneous Determination of Five Wood Monosaccharides and the Corresponding Aldonic Acids in Fermentation Broth Using High-Performance Anion-Exchange Chromatography Coupled with a Pulsed Amperometric Detector. <i>Journal of Wood Chemistry and</i>	2	13
7	An improved process of ethanol production from hemicellulose: bioconversion of undetoxified hemicellulosic hydrolyzate from steam-exploded corn stover with a domesticated Pichia stipitis. Applied Biochemistry and Biotechnology, 2012, 167, 2330-40	3.2	10
6	Dilute Sulfuric Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover into Fermentable Sugars. <i>Advanced Materials Research</i> , 2012 , 535-537, 2462-2468	0.5	3
5	Production of a Trichoderma reesei QM9414 xylanase in Pichia pastoris and its application in biobleaching of wheat straw pulp. <i>World Journal of Microbiology and Biotechnology</i> , 2011 , 27, 751-758	4.4	3
4	Extractive bioconversion of xylan for production of xylobiose and xylotriose using a PEG6000/sodium citrate aqueous two-phase system. <i>Korean Journal of Chemical Engineering</i> , 2011 , 28, 1897-1901	2.8	5
3	Enhanced saccharification of SO2 catalyzed steam-exploded corn stover by polyethylene glycol addition. <i>Biomass and Bioenergy</i> , 2011 , 35, 2053-2058	5.3	18
2	Oxygen plasma-treated enzymatic hydrolysis lignin as a natural binder for manufacturing biocomposites. <i>Holzforschung</i> , 2011 , 65, 829-833	2	11
1	Unveiling the mechanism of various pretreatments on improving enzymatic hydrolysis efficiency of the giant reed by chromatic analysis. <i>Biomass Conversion and Biorefinery</i> ,1	2.3	2