Anil Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5830398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Handling heterogeneity through 'individual sample as mean' approach – A case study of Isabgol(Psyllium husk)Medicinal crop. Remote Sensing Applications: Society and Environment, 2022, 25, 100671.	1.5	3
2	Study the Effect of MRF Model on Fuzzy c Means Classifiers with Different Parameters and Distance Measures. Journal of the Indian Society of Remote Sensing, 2022, 50, 1177-1189.	2.4	2
3	Effects of Training Parameter Concept and Sample Size in Possibilistic c-Means Classifier for Pigeon Pea Specific Crop Mapping. Geomatics, 2022, 2, 107-124.	1.9	4
4	Training concepts in Noise Clustering Classifier -A case study for Pigeon Pea crop mapping. Remote Sensing Applications: Society and Environment, 2022, 26, 100736.	1.5	0
5	A fuzzy machine learning approach for identification of paddy stubble burnt fields. Spatial Information Research, 2021, 29, 319-329.	2.2	4
6	Fuzzy machine learning approach for transitioned building footprints extraction using dual-sensor temporal data. SN Applied Sciences, 2021, 3, 1.	2.9	1
7	Kernel-Based MPCM Algorithm with Spatial Constraints and Local Contextual Information for Mapping Paddy Burnt Fields. Journal of the Indian Society of Remote Sensing, 2021, 49, 1743-1754.	2.4	3
8	Procreation of training data using cognitive science in temporal data processing for burnt paddy fields mapping. Remote Sensing Applications: Society and Environment, 2021, 22, 100516.	1.5	0
9	A Stochastic Approach for Automatic Collection of Precise Training Data for a Soft Machine Learning Algorithm Using Remote Sensing Images. Advances in Intelligent Systems and Computing, 2021, , 285-297.	0.6	3
10	Identification of Paddy Stubble Burnt Activities Using Temporal Class-Based Sensor-Independent Indices Database: Modified Possibilistic Fuzzy Classification Approach. Journal of the Indian Society of Remote Sensing, 2020, 48, 423-430.	2.4	5
11	Handling non-linearity between classes using spectral and spatial information with kernel based modified possibilistic c-means classifier. Geocarto International, 2020, , 1-18.	3.5	1
12	Modified possibilistic c- means with constraints (MPCM-S) approach for incorporating the local information in a remote sensing image classification Remote Sensing Applications: Society and Environment, 2020, 18, 100319.	1.5	5
13	Effect of Red-Edge Region in Fuzzy Classification: A Case Study of Sunflower Crop. Journal of the Indian Society of Remote Sensing, 2020, 48, 645-657.	2.4	9
14	Integration of C band SAR and optical temporal data for identification of paddy fields. SN Applied Sciences, 2020, 2, 1.	2.9	1
15	Multisensor temporal approach for transplanted paddy fields mapping using fuzzy-based classifiers. Journal of Applied Remote Sensing, 2020, 14, 1.	1.3	6
16	Study of the Behavior of Super Resolution on Soft-Classified Output. Journal of the Indian Society of Remote Sensing, 2019, 47, 1751-1760.	2.4	0
17	Noise Clustering-Based Hypertangent Kernel Classifier for Satellite Imaging Analysis. Journal of the Indian Society of Remote Sensing, 2019, 47, 2009-2025.	2.4	5
18	Performance Evaluation of Kernel-Based Supervised Noise Clustering Approach. Journal of the Indian Society of Remote Sensing, 2019, 47, 317-330.	2.4	4

Anil Kumar

#	Article	IF	CITATIONS
19	Spatio-Temporal Monitoring of Shifting Cultivation Using Landsat Images: Soft Classification Approach. Journal of the Indian Society of Remote Sensing, 2018, 46, 1047-1052.	2.4	7
20	Quantification of potential area of incursion of pine in oak forest in western Himalaya using fuzzy classification technique. Journal of Applied Remote Sensing, 2018, 12, 1.	1.3	3
21	Wheat Monitoring by Using Kernel Based Possibilistic c-Means Classifier: Bi-sensor Temporal Multi-spectral Data. Journal of the Indian Society of Remote Sensing, 2017, 45, 1005-1014.	2.4	4
22	Comparison of Fusion Techniques for Very High Resolution Data for Extraction of Urban Land-Cover. Journal of the Indian Society of Remote Sensing, 2017, 45, 709-724.	2.4	4
23	Applicability of NDVI temporal database for western Himalaya forest mapping using Fuzzy-based PCM classifier. European Journal of Remote Sensing, 2017, 50, 614-625.	3.5	8
24	Soft Computing in Remote Sensing Applications. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2017, 87, 503-517.	1.2	5
25	Temporal MODIS data for identification of wheat crop using noise clustering soft classification approach. Geocarto International, 2016, 31, 278-295.	3.5	9
26	Importance of DA-MRF Models in Fuzzy Based Classifier. Journal of the Indian Society of Remote Sensing, 2015, 43, 27-35.	2.4	3
27	An effective hybrid approach to remote-sensing image classification. International Journal of Remote Sensing, 2015, 36, 2767-2785.	2.9	6
28	Study of soft classification approaches for identification of earthquake-induced liquefied soil. Geomatics, Natural Hazards and Risk, 2014, 5, 334-352.	4.3	4
29	Multisensor fusion of satellite images for urban information extraction using pseudo-Wigner distribution. Journal of Applied Remote Sensing, 2014, 8, 083668.	1.3	5
30	Earthquake-induced built-up damage identification using IRS-P6 data: a comparative study using fuzzy-based classifiers. Geocarto International, 2014, 29, 211-225.	3.5	3
31	Moist deciduous forest identification using MODIS temporal indices data. International Journal of Remote Sensing, 2014, 35, 3177-3196.	2.9	5
32	Fuzzy Based Approach for Moist Deciduous Forest Identification Using MODIS Temporal Data. Journal of the Indian Society of Remote Sensing, 2013, 41, 777-786.	2.4	3
33	Moist deciduous forest identification using temporal MODIS data — A comparative study using fuzzy based classifiers. Ecological Informatics, 2013, 18, 117-130.	5.2	9
34	Evaluation of fuzzy-based classifiers for cotton crop identification. Geocarto International, 2013, 28, 243-257.	3.5	7
35	Earthquake-induced built-up damage identification using fuzzy approach. Geomatics, Natural Hazards and Risk, 2013, 4, 320-338.	4.3	4
36	Effect on specific crop mapping using WorldView-2 multispectral add-on bands: soft classification approach. Journal of Applied Remote Sensing, 2012, 6, 063524-1.	1.3	36

Anil Kumar

#	Article	IF	CITATIONS
37	Liquefaction identification using class-based sensor independent approach based on single pixel classification after 2001 Bhuj, India earthquake. Journal of Applied Remote Sensing, 2012, 6, 063531.	1.3	8
38	Cotton Crop Discrimination Using Fuzzy Classification Approach. Journal of the Indian Society of Remote Sensing, 2012, 40, 589-597.	2.4	17
39	CO-Kriging Approach for Cartosat-1 Height Product with ICESat/GLAS Data for Digital Elevation Surface Generation. Journal of the Indian Society of Remote Sensing, 2012, 40, 11-17.	2.4	2
40	Suitable sampling technique in contextual fuzzy <i>c</i> -means classification of remotely sensed data for land cover mapping. Geocarto International, 2010, 25, 369-378.	3.5	0
41	Cartosat-1 height product and ICESat/GLAS data for digital elevation surface generation. Journal of the Indian Society of Remote Sensing, 2009, 37, 565-572.	2.4	3
42	Full fuzzy land cover mapping using remote sensing data based on fuzzyc-means and density estimation. Canadian Journal of Remote Sensing, 2007, 33, 81-87.	2.4	17
43	A Comparative Study of 1D-Convolutional Neural Networks with Modified Possibilistic c-Mean Algorithm for Mapping Transplanted Paddy Fields Using Temporal Data. Journal of the Indian Society of Remote Sensing, 0, , 1.	2.4	1
44	Fuzzy Based Approach to Incorporate Spatial Constraints in Possibilistic c-Means Algorithm for Remotely Sensed Imagery. SSRN Electronic Journal, 0, , .	0.4	4