Mikhail Bogdanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5830282/publications.pdf Version: 2024-02-01

MIKHAIL BOCDANOV

#	Article	IF	CITATIONS
1	Lipid-Dependent Membrane Protein Topogenesis. Annual Review of Biochemistry, 2009, 78, 515-540.	11.1	229
2	A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO Journal, 2002, 21, 2107-2116.	7.8	205
3	Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16504-16509.	7.1	195
4	Lipid-assisted Protein Folding. Journal of Biological Chemistry, 1999, 274, 36827-36830.	3.4	189
5	A Phospholipid Acts as a Chaperone in Assembly of a Membrane Transport Protein. Journal of Biological Chemistry, 1996, 271, 11615-11618.	3.4	188
6	Phospholipid-assisted protein folding: phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease. EMBO Journal, 1998, 17, 5255-5264.	7.8	149
7	Phosphatidylethanolamine Is Required for in Vivo Function of the Membrane-associated Lactose Permease of Escherichia coli. Journal of Biological Chemistry, 1995, 270, 732-739.	3.4	138
8	Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAMTM): Application to lipid-specific membrane protein topogenesis. Methods, 2005, 36, 148-171.	3.8	133
9	To flip or not to flip: lipid–protein charge interactions are a determinant of final membrane protein topology. Journal of Cell Biology, 2008, 182, 925-935.	5.2	128
10	Phospholipid-assisted Refolding of an Integral Membrane Protein. Journal of Biological Chemistry, 1999, 274, 12339-12345.	3.4	125
11	Lipids in the Assembly of Membrane Proteins and Organization of Protein Supercomplexes: Implications for Lipid-linked Disorders. Sub-Cellular Biochemistry, 2008, 49, 197-239.	2.4	117
12	Lipids and topological rules governing membrane protein assembly. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1475-1488.	4.1	113
13	Reversible Topological Organization within a Polytopic Membrane Protein Is Governed by a Change in Membrane Phospholipid Composition. Journal of Biological Chemistry, 2003, 278, 50128-50135.	3.4	99
14	Topology of polytopic membrane protein subdomains is dictated by membrane phospholipid composition. EMBO Journal, 2002, 21, 5673-5681.	7.8	95
15	Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15057-15062.	7.1	91
16	In vitro reconstitution of lipid-dependent dual topology and postassembly topological switching of a membrane protein. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9338-9343.	7.1	87
17	Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent. Nature Communications, 2017, 8, 14108.	12.8	81
18	Phospholipid distribution in the cytoplasmic membrane of Gram-negative bacteria is highly asymmetric, dynamic, and cell shape-dependent. Science Advances, 2020, 6, eaaz6333.	10.3	81

#	Article	IF	CITATIONS
19	Phosphatidylethanolamine and Monoglucosyldiacylglycerol Are Interchangeable in Supporting Topogenesis and Function of the Polytopic Membrane Protein Lactose Permease. Journal of Biological Chemistry, 2006, 281, 19172-19178.	3.4	80
20	Dynamic membrane protein topological switching upon changes in phospholipid environment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13874-13879.	7.1	75
21	Lipid–protein interactions as determinants of membrane protein structure and function. Biochemical Society Transactions, 2011, 39, 767-774.	3.4	73
22	Lipid-engineered Escherichia coli Membranes Reveal Critical Lipid Headgroup Size for Protein Function. Journal of Biological Chemistry, 2009, 284, 954-965.	3.4	72
23	Monoglucosyldiacylglycerol, a Foreign Lipid, Can Substitute for Phosphatidylethanolamine in Essential Membrane-associated Functions in Escherichia coli. Journal of Biological Chemistry, 2004, 279, 10484-10493.	3.4	68
24	Lipid-Protein Interactions Drive Membrane Protein Topogenesis in Accordance with the Positive Inside Rule. Journal of Biological Chemistry, 2009, 284, 9637-9641.	3.4	67
25	Lipid-dependent Generation of Dual Topology for a Membrane Protein. Journal of Biological Chemistry, 2012, 287, 37939-37948.	3.4	58
26	Competition between Grb2 and Plcγ1 for FGFR2 regulates basal phospholipase activity and invasion. Nature Structural and Molecular Biology, 2014, 21, 180-188.	8.2	54
27	Functional roles of lipids in membranes. , 2008, , 1-37.		51
28	Lipid-Assisted Membrane Protein Folding and Topogenesis. Protein Journal, 2019, 38, 274-288.	1.6	50
29	Lipids and Topological Rules of Membrane Protein Assembly. Journal of Biological Chemistry, 2011, 286, 15182-15194.	3.4	39
30	Molecular genetic and biochemical approaches for defining lipid-dependent membrane protein folding. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1097-1107.	2.6	31
31	Biosynthetic preparation of selectively deuterated phosphatidylcholine in genetically modified Escherichia coli. Applied Microbiology and Biotechnology, 2015, 99, 241-254.	3.6	31
32	Substrate Selectivity of Lysophospholipid Transporter LplT Involved in Membrane Phospholipid Remodeling in Escherichia coli. Journal of Biological Chemistry, 2016, 291, 2136-2149.	3.4	31
33	Study of Polytopic Membrane Protein Topological Organization as a Function of Membrane Lipid Composition. Methods in Molecular Biology, 2010, 619, 79-101.	0.9	31
34	Cardiolipin is required in vivo for the stability of bacterial translocon and optimal membrane protein translocation and insertion. Scientific Reports, 2020, 10, 6296.	3.3	30
35	Proper Fatty Acid Composition Rather than an Ionizable Lipid Amine Is Required for Full Transport Function of Lactose Permease from Escherichia coli. Journal of Biological Chemistry, 2013, 288, 5873-5885.	3.4	29
36	Dynamic Lipid-dependent Modulation of Protein Topology by Post-translational Phosphorylation. Journal of Biological Chemistry, 2017, 292, 1613-1624.	3.4	29

MIKHAIL BOGDANOV

#	Article	IF	CITATIONS
37	Extreme deformability of insect cell membranes is governed by phospholipid scrambling. Cell Reports, 2021, 35, 109219.	6.4	25
38	Mapping of Membrane Protein Topology by Substituted Cysteine Accessibility Method (SCAMâ,,¢). Methods in Molecular Biology, 2017, 1615, 105-128.	0.9	18
39	Measurement of Lysophospholipid Transport Across the Membrane Using Escherichia coli Spheroplasts. Methods in Molecular Biology, 2019, 1949, 165-180.	0.9	11
40	Eugene P. Kennedy's Legacy: Defining Bacterial Phospholipid Pathways and Function. Frontiers in Molecular Biosciences, 2021, 8, 666203.	3.5	10
41	Tat transport in <i>Escherichia coli</i> requires zwitterionic phosphatidylethanolamine but no specific negatively charged phospholipid. FEBS Letters, 2017, 591, 2848-2858.	2.8	9
42	Subcellular Localization and Logistics of Integral Membrane Protein Biogenesis inEscherichia coli. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 24-34.	1.0	8
43	Functional Roles of Lipids in Membranes. , 2016, , 1-40.		8
44	Effects of mixed proximal and distal topogenic signals on the topological sensitivity of a membrane protein to the lipid environment. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1291-1300.	2.6	7
45	The lipid-dependent structure and function of LacY can be recapitulated and analyzed in phospholipid-containing detergent micelles. Scientific Reports, 2019, 9, 11338.	3.3	7
46	TTAPE-Me dye is not selective to cardiolipin and binds to common anionic phospholipids nonspecifically. Biophysical Journal, 2021, 120, 3776-3786.	0.5	6
47	May the Force Be With You: Unfolding Lipid-Protein Interactions By Single-Molecule Force Spectroscopy. Structure, 2015, 23, 612-614.	3.3	4
48	Single Amino Acid Replacements in RocA Disrupt Protein-Protein Interactions To Alter the Molecular Pathogenesis of Group A <i>Streptococcus</i> . Infection and Immunity, 2020, 88, .	2.2	4
49	Characterization of SLC34A2 as a Potential Prognostic Marker of Oncological Diseases. Biomolecules, 2021, 11, 1878.	4.0	4
50	Functional Roles of Individual Membrane Phospholipids in Escherichia coli and Saccharomyces cerevisiae. , 2017, , 1-22.		3
51	Flip-Flopping Membrane Proteins: How the Charge Balance Rule Governs Dynamic Membrane Protein Topology. , 2018, , 1-28.		3
52	Relationship between Adaptive Changing of Lysophosphatidylethanolamine Content in the Bacterial Envelope and Ampicillin Sensitivity of <i>Yersinia pseudotuberculosis</i> . Journal of Molecular Microbiology and Biotechnology, 2018, 28, 236-239.	1.0	1
53	Functional roles of lipids in biological membranes. , 2021, , 1-51.		1
54	Functional Roles of Individual Membrane Phospholipids in Escherichia coli and Saccharomyces cerevisiae. , 2019, , 553-574.		0

4

#	Article	IF	CITATIONS
55	Flip-Flopping Membrane Proteins: How the Charge Balance Rule Governs Dynamic Membrane Protein Topology. , 2019, , 609-636.		0
56	Lipid-Assisted Membrane Protein Folding and Topogenesis. , 2011, , 177-201.		0
57	Toward a Topology-Based Therapeutic Design of Membrane Proteins: Validation of NaPi2b Topology in Live Ovarian Cancer Cells. Frontiers in Molecular Biosciences, 0, 9, .	3.5	0