Mahnaz Ramezanpour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/583008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Th17 Cytokines Disrupt the Airway Mucosal Barrier in Chronic Rhinosinusitis. Mediators of Inflammation, 2016, 2016, 1-7.	3.0	69
2	The international sinonasal microbiome study: A multicentre, multinational characterization of sinonasal bacterial ecology. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2037-2049.	5.7	55
3	3D bioprinting of a cell-laden antibacterial polysaccharide hydrogel composite. Carbohydrate Polymers, 2021, 264, 117989.	10.2	48
4	<i>Staphylococcus Aureus</i> V8 protease disrupts the integrity of the airway epithelial barrier and impairs ILâ€6 production in vitro. Laryngoscope, 2018, 128, E8-E15.	2.0	47
5	Taking the Silver Bullet Colloidal Silver Particles for the Topical Treatment of Biofilm-Related Infections. ACS Applied Materials & Interfaces, 2017, 9, 21631-21638.	8.0	43
6	Mind "De GaPPâ€: in vitro efficacy of deferiprone and galliumâ€protoporphyrin against <i>Staphylococcus aureus</i> biofilms. International Forum of Allergy and Rhinology, 2016, 6, 737-743.	2.8	39
7	Pseudomonas aeruginosa Exoprotein-Induced Barrier Disruption Correlates With Elastase Activity and Marks Chronic Rhinosinusitis Severity. Frontiers in Cellular and Infection Microbiology, 2019, 9, 38.	3.9	31
8	The effect of neutrophil serine proteases on human nasal epithelial cell barrier function. International Forum of Allergy and Rhinology, 2019, 9, 1220-1226.	2.8	29
9	Quatsomes for the treatment of Staphylococcus aureus biofilm. Journal of Materials Chemistry B, 2015, 3, 2770-2777.	5.8	28
10	Primary human nasal epithelial cells: a source of poly (I:C) LMW-induced IL-6 production. Scientific Reports, 2018, 8, 11325.	3.3	26
11	In vitro safety evaluation of a povidoneâ€iodine solution applied to human nasal epithelial cells. International Forum of Allergy and Rhinology, 2020, 10, 1141-1148.	2.8	26
12	Proteomic analysis of nasal mucus samples of healthy patients and patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2021, 147, 168-178.	2.9	25
13	In vitro safety evaluation of human nasal epithelial cell monolayers exposed to carrageenan sinus wash. International Forum of Allergy and Rhinology, 2017, 7, 1170-1177.	2.8	21
14	Microbiotyping the Sinonasal Microbiome. Frontiers in Cellular and Infection Microbiology, 2020, 10, 137.	3.9	21
15	Mucosal zinc deficiency in chronic rhinosinusitis with nasal polyposis contributes to barrier disruption and decreases <scp>ZO</scp> â€1. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2095-2097.	5.7	20
16	Deferiprone has anti-inflammatory properties and reduces fibroblast migration in vitro. Scientific Reports, 2019, 9, 2378.	3.3	20
17	Association between mucosal barrier disruption by <i>Pseudomonas aeruginosa</i> exoproteins and asthma in patients with chronic rhinosinusitis. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3459-3469.	5.7	19
18	Sub-Inhibitory Clindamycin and Azithromycin reduce S. aureus Exoprotein Induced Toxicity, Inflammation. Barrier Disruption and Invasion. Journal of Clinical Medicine. 2019. 8, 1617.	2.4	18

#	Article	IF	CITATIONS
19	<i>Staphylococcus aureus</i> biofilm exoproteins are cytotoxic to human nasal epithelial barrier in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2020, 10, 871-883.	2.8	18
20	Inducing a Mucosal Barrier–Sparing Inflammatory Response in Laboratoryâ€Grown Primary Human Nasal Epithelial Cells. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2019, 80, e69.	1.1	16
21	Antibiotics Affect ROS Production and Fibroblast Migration in an In-vitro Model of Sinonasal Wound Healing. Frontiers in Cellular and Infection Microbiology, 2020, 10, 110.	3.9	16
22	Inhibition of <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> biofilms by quatsomes in low concentrations. Experimental Biology and Medicine, 2020, 245, 34-41.	2.4	15
23	Sirtuin-1 Controls Poly (I:C)–Dependent Matrix Metalloproteinase 9 Activation in Primary Human Nasal Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 500-510.	2.9	14
24	Increased IL-13 expression is independently associated with neo-osteogenesis in patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2017, 140, 1444-1448.e11.	2.9	11
25	In vitro characteristics of an airway barrierâ€disrupting factor secreted by <i>Staphylococcus aureus</i> . International Forum of Allergy and Rhinology, 2019, 9, 187-196.	2.8	11
26	Barrier disruptive effects of mucus isolated from chronic rhinosinusitis patients. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 200-203.	5.7	11
27	Fluticasone Propionate Suppresses Poly(I:C)-Induced ACE2 in Primary Human Nasal Epithelial Cells. Frontiers in Cellular and Infection Microbiology, 2021, 11, 655666.	3.9	11
28	Converging 2D Nanomaterials and 3D Bioprinting Technology: Stateâ€ofâ€ŧheâ€Art, Challenges, and Potential Outlook in Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2101439.	7.6	9
29	Effect of commercial nasal steroid preparation on bacterial growth. International Forum of Allergy and Rhinology, 2019, 9, 766-775.	2.8	8
30	Kappaâ€carrageenan sinus rinses reduce inflammation and intracellular Staphylococcus aureus infection in airway epithelial cells. International Forum of Allergy and Rhinology, 2019, 9, 918-925.	2.8	6
31	Der p 1 Disrupts the Epithelial Barrier and Induces IL-6 Production in Patients With House Dust Mite Allergic Rhinitis. Frontiers in Allergy, 2021, 2, 692049.	2.8	6
32	TLR Signals in Epithelial Cells in the Nasal Cavity and Paranasal Sinuses. Frontiers in Allergy, 2021, 2, 780425.	2.8	5
33	In vitro and in vivo evaluation of probiotic properties of Corynebacterium accolens isolated from the human nasal cavity. Microbiological Research, 2022, 255, 126927.	5.3	5
34	Trimellitic anhydride facilitates transepithelial permeability disrupting tight junctions in sinonasal epithelial cells. Toxicology Letters, 2021, 353, 27-33.	0.8	4
35	Metallothionein-3 is a clinical biomarker for tissue zinc levels in nasal mucosa. Auris Nasus Larynx, 2021, 48, 890-897.	1.2	3
36	Association between viral infection and increased mucosal eosinophils and CD8 ⁺ CD103 ⁺ T cells in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2020, 10, 978-980.	2.8	0

#	Article	IF	CITATIONS
37	<i>In vitro</i> safety and antiâ€bacterial efficacy assessment of acriflavine. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1917-1920.	5.7	0