
Grazvydas Lukinavicius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5829996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nature Chemistry, 2013, 5, 132-139.	6.6	779
2	Fluorogenic probes for live-cell imaging of the cytoskeleton. Nature Methods, 2014, 11, 731-733.	9.0	705
3	SiR–Hoechst is a far-red DNA stain for live-cell nanoscopy. Nature Communications, 2015, 6, 8497.	5.8	244
4	Fluorogenic Probes for Multicolor Imaging in Living Cells. Journal of the American Chemical Society, 2016, 138, 9365-9368.	6.6	218
5	Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases. Nature Chemical Biology, 2006, 2, 31-32.	3.9	209
6	Cytosine-5-methyltransferases add aldehydes to DNA. Nature Chemical Biology, 2009, 5, 400-402.	3.9	133
7	Cell-Permeant Large Stokes Shift Dyes for Transfection-Free Multicolor Nanoscopy. Journal of the American Chemical Society, 2017, 139, 12378-12381.	6.6	119
8	The Use of Hoechst Dyes for DNA Staining and beyond. Chemosensors, 2018, 6, 18.	1.8	116
9	Targeted Labeling of DNA by Methyltransferase-Directed Transfer of Activated Groups (mTAG). Journal of the American Chemical Society, 2007, 129, 2758-2759.	6.6	110
10	Triarylmethane Fluorophores Resistant to Oxidative Photobluing. Journal of the American Chemical Society, 2019, 141, 981-989.	6.6	103
11	Selective Chemical Crosslinking Reveals a Cep57-Cep63-Cep152 Centrosomal Complex. Current Biology, 2013, 23, 265-270.	1.8	102
12	Parental genome unification is highly error-prone in mammalian embryos. Cell, 2021, 184, 2860-2877.e22.	13.5	89
13	Synthesis of S-adenosyl-L-methionine analogs and their use for sequence-specific transalkylation of DNA by methyltransferases. Nature Protocols, 2006, 1, 1879-1886.	5.5	86
14	Rhodamine–Hoechst positional isomers for highly efficient staining of heterochromatin. Chemical Science, 2019, 10, 1962-1970.	3.7	85
15	Fluorescent dyes and probes for super-resolution microscopy of microtubules and tracheoles in living cells and tissues. Chemical Science, 2018, 9, 3324-3334.	3.7	74
16	Selective Cross-Linking of Interacting Proteins Using Self-Labeling Tags. Journal of the American Chemical Society, 2009, 131, 17954-17962.	6.6	65
17	Mechanism of spindle pole organization and instability in human oocytes. Science, 2022, 375, eabj3944.	6.0	55
18	Enhanced Chemical Stability of AdoMet Analogues for Improved Methyltransferase-Directed Labeling of DNA. ACS Chemical Biology, 2013, 8, 1134-1139.	1.6	53

GRAZVYDAS LUKINAVICIUS

#	Article	IF	CITATIONS
19	Enhancing the biocompatibility of rhodamine fluorescent probes by a neighbouring group effect. Chemical Science, 2020, 11, 7313-7323.	3.7	49
20	Engineering the DNA cytosine-5 methyltransferase reaction for sequence-specific labeling of DNA. Nucleic Acids Research, 2012, 40, 11594-11602.	6.5	42
21	Switchable fluorophores for protein labeling in living cells. Current Opinion in Chemical Biology, 2011, 15, 768-774.	2.8	34
22	Substrates for Improved Live-Cell Fluorescence Labeling of SNAP-tag. Current Pharmaceutical Design, 2013, 19, 5414-5420.	0.9	34
23	Blinking Fluorescent Probes for Tubulin Nanoscopy in Living and Fixed Cells. ACS Chemical Biology, 2021, 16, 2130-2136.	1.6	24
24	Targeted Photoswitchable Probe for Nanoscopy of Biological Structures. ChemBioChem, 2010, 11, 1361-1363.	1.3	19
25	Reduced Dyes Enhance Singleâ€Molecule Localization Density for Live Superresolution Imaging. ChemPhysChem, 2014, 15, 750-755.	1.0	19
26	Far-red switching DNA probes for live cell nanoscopy. Chemical Communications, 2020, 56, 14797-14800.	2.2	19
27	Efflux pump insensitive rhodamine–jasplakinolide conjugates for G- and F-actin imaging in living cells. Organic and Biomolecular Chemistry, 2020, 18, 2929-2937.	1.5	17
28	Fluorescent Labeling of SNAP-Tagged Proteins in Cells. Methods in Molecular Biology, 2015, 1266, 107-118.	0.4	17
29	Application of STED imaging for chromatin studies. Journal Physics D: Applied Physics, 2019, 52, 504003.	1.3	15
30	Inside a Shell—Organometallic Catalysis Inside Encapsulin Nanoreactors. Angewandte Chemie - International Edition, 2021, 60, 23835-23841.	7.2	15
31	Visualizing Biochemical Activities in Living Cells through Chemistry. Chimia, 2011, 65, 868-871.	0.3	14
32	Strategic blinking. Nature Chemistry, 2014, 6, 663-664.	6.6	14
33	[Letter to the editor]: Commercial Cdk1 antibodies recognize the centrosomal protein Cep152. BioTechniques, 2013, 55, 111-114.	0.8	12
34	High-Affinity Functional Fluorescent Ligands for Human β-Adrenoceptors. Scientific Reports, 2017, 7, 12319.	1.6	10
35	Direct Visualization of Amlodipine Intervention into Living Cells by Means of Fluorescence Microscopy. Molecules, 2021, 26, 2997.	1.7	5
36	Fluorescent Probes for Live Cell Imaging. Chemosensors, 2018, 6, 41.	1.8	3

#	Article	IF	CITATIONS
37	Inside a Shell—Organometallic Catalysis Inside Encapsulin Nanoreactors. Angewandte Chemie, 2021, 133, 24028-24034.	1.6	3
38	Live Fluorescence Imaging of F-Actin Organization in Chick Whole Embryo Cultures Using SiR-Actin. Cells, 2021, 10, 1578.	1.8	0