Changsui Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5829952/publications.pdf

Version: 2024-02-01

567144 552653 1,085 28 15 26 citations h-index g-index papers 28 28 28 1037 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Particulate Matter Formation and Alkali and Alkaline Earth Metal Partitioning in a Pressurized Oxy-fuel Fluidized-Bed Combustor. Energy & Energy & 10895-10903.	2.5	13
2	Sulfur Enrichment in Particulate Matter Generated from a Lab-Scale Pressurized Fluidized Bed Combustor. Energy & Energy	2.5	14
3	Effects of Air Pollution Control Devices on the Chlorine Emission from 410 t/h Circulating Fluidized Bed Boilers Co-firing Petroleum Coke and Coal. Energy & Energy & 2018, 32, 4410-4416.	2.5	11
4	Carbonation kinetics of flyâ€ashâ€modified calciumâ€based sorbents for CO ₂ capture. , 2018, 8, 292-308.		6
5	Resistance Characteristics of Pressure Letdown in Dense-Phase Pneumatic Conveying. Journal of Chemical Engineering of Japan, 2016, 49, 511-518.	0.3	2
6	CO ₂ Capture Performance of Calciumâ€Based Sorbents in the Presence of SO ₂ under Pressurized Carbonation. Chemical Engineering and Technology, 2016, 39, 1058-1066.	0.9	6
7	Evolution of fuel-N in gas phase during biomass pyrolysis. Renewable and Sustainable Energy Reviews, 2015, 50, 408-418.	8.2	86
8	Conveying Characteristics and Resistance Properties in High-Pressure Dense-Phase Pneumatic Conveying of Anthracite and Petroleum Coke. Journal of Chemical Engineering of Japan, 2015, 48, 163-174.	0.3	4
9	NO _{<i>x</i>} and N ₂ O Precursors from Biomass Pyrolysis: Role of Cellulose, Hemicellulose and Lignin. Environmental Science & Enviro	4.6	26
10	Effect of Water Vapor on Indirect Sulfation during Oxy-fuel Combustion. Energy & Ene	2.5	33
11	NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis: interaction between amino acid and mineral matter. Applied Energy, 2013, 112, 170-174.	5.1	70
12	Effect of Blow Tank Type and Powder Properties on Dense Phase Pneumatic Conveying Characteristics of Two Fuel Powders at High Pressure. Journal of Chemical Engineering of Japan, 2013, 46, 649-658.	0.3	4
13	NO _{<i>x</i>} and N ₂ O Precursors from Biomass Pyrolysis: Nitrogen Transformation from Amino Acid. Environmental Science & T	4.6	99
14	Carbonation and Active-Component-Distribution Behaviors of Several Potassium-Based Sorbents. Industrial & Engineering Chemistry Research, 2011, 50, 4464-4470.	1.8	28
15	NO and N2O precursors (NH3 and HCN) from biomass pyrolysis: Co-pyrolysis of amino acids and cellulose, hemicellulose and lignin. Proceedings of the Combustion Institute, 2011, 33, 1715-1722.	2.4	120
16	Effect of moisture content on dense-phase conveying of pulverized coal at high pressure. Korean Journal of Chemical Engineering, 2011, 28, 2086-2093.	1.2	7
17	10.2478/s11814-009-0190-у. , 2011, 26, 1144.		0
18	Catalytic effects of Fe, Al and Si on the formation of NOX precursors and HCl during straw pyrolysis. Journal of Thermal Analysis and Calorimetry, 2010, 99, 301-306.	2.0	26

#	Article	IF	CITATION
19	Mercury speciation and emission from the coalâ€fired power plant filled with flue gas desulfurization equipment. Canadian Journal of Chemical Engineering, 2010, 88, 867-873.	0.9	5
20	Formation of NOx precursors during wheat straw pyrolysis and gasification with O2 and CO2. Fuel, 2010, 89, 1064-1069.	3.4	63
21	CO ₂ Capture Performance of Calcium-Based Sorbents in a Pressurized Carbonation/Calcination Loop. Energy & Ene	2.5	48
22	Multiple-Cycles Behavior of K ₂ CO ₃ /Al ₂ O ₃ for CO ₂ Capture in a Fluidized-Bed Reactor. Energy &	2.5	82
23	Carbonation Behavior of K ₂ CO ₃ with Different Microstructure Used as an Active Component of Dry Sorbents for CO ₂ Capture. Industrial & Dry Sorbents for CO ₂ Capture. Industrial & Dry Sorbents for CO ₂	1.8	48
24	Flow characteristics and dynamic behavior of dense-phase pneumatic conveying of pulverized coal with variable moisture content at high pressure. Korean Journal of Chemical Engineering, 2009, 26, 867-873.	1.2	9
25	CFD simulation of coal-water slurry flowing in horizontal pipelines. Korean Journal of Chemical Engineering, 2009, 26, 1144-1154.	1.2	64
26	Effect of mineral matter on the formation of NOX precursors during biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 2009, 85, 447-453.	2.6	94
27	CO ₂ Absorption Using Dry Potassium-Based Sorbents with Different Supports. Energy & Lamp; Fuels, 2009, 23, 4683-4687.	2.5	113
28	Polycyclic Aromatic Hydrocarbon (PAH) Emission from Co-Firing of Petrochemical Sludge with Coal in Circulating Fluidized Bed Incinerator. Journal of Chemical Engineering of Japan, 2009, 42, 58-63.	0.3	4