Sylvie Ribeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5829731/publications.pdf Version: 2024-02-01

SVIVIE PIREIDO

#	Article	IF	CITATIONS
1	Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Advances, 2013, 3, 17938.	1.7	128
2	Poly(vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications. Polymer Testing, 2015, 44, 234-241.	2.3	99
3	Piezoelectric poly(vinylidene fluoride) microstructure and poling state in active tissue engineering. Engineering in Life Sciences, 2015, 15, 351-356.	2.0	91
4	Magnetic Nanoparticles for Biomedical Applications: From the Soul of the Earth to the Deep History of Ourselves. ACS Applied Bio Materials, 2021, 4, 5839-5870.	2.3	67
5	Relation between fiber orientation and mechanical properties of nano-engineered poly(vinylidene) Tj ETQq1	1 0.784314 rgl	BT /Overlock
6	Mechanical vs. electrical hysteresis of carbon nanotube/styrene–butadiene–styrene composites and their influence in the electromechanical response. Composites Science and Technology, 2015, 109, 1-5.	3.8	60
7	Electrospun styrene–butadiene–styrene elastomer copolymers for tissue engineering applications: Effect of butadiene/styrene ratio, block structure, hydrogenation and carbon nanotube loading on physical properties and cytotoxicity. Composites Part B: Engineering, 2014, 67, 30-38.	5.9	52
8	Ionic Liquid-Based Materials for Biomedical Applications. Nanomaterials, 2021, 11, 2401.	1.9	52
9	Green solvent approach for printable large deformation thermoplastic elastomer based piezoresistive sensors and their suitability for biomedical applications. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2092-2103.	2.4	50
10	Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applications. Journal of Materials Science, 2016, 51, 4442-4450.	1.7	48
11	Electroactive biomaterial surface engineering effects on muscle cells differentiation. Materials Science and Engineering C, 2018, 92, 868-874.	3.8	47
12	Ionic-Liquid-Based Electroactive Polymer Composites for Muscle Tissue Engineering. ACS Applied Polymer Materials, 2019, 1, 2649-2658.	2.0	46
13	Electromechanical actuators based on poly(vinylidene fluoride) with [N1Â1Â1Â2(OH)][NTf2] and [C2mim] [C2SO4]. Journal of Materials Science, 2016, 51, 9490-9503.	1.7	40
14	Magnetically Activated Electroactive Microenvironments for Skeletal Muscle Tissue Regeneration. ACS Applied Bio Materials, 2020, 3, 4239-4252.	2.3	39
15	Effect of butadiene/styrene ratio, block structure and carbon nanotube content on the mechanical and electrical properties of thermoplastic elastomers after UV ageing. Polymer Testing, 2015, 42, 225-233.	2.3	37
16	Physically Active Bioreactors for Tissue Engineering Applications. Advanced Biology, 2020, 4, e2000125.	3.0	29
17	Piezo- and Magnetoelectric Polymers as Biomaterials for Novel Tissue Engineering Strategies. MRS Advances, 2018, 3, 1671-1676.	0.5	26
18	Surface Charge-Mediated Cell–Surface Interaction on Piezoelectric Materials. ACS Applied Materials & Interfaces, 2020, 12, 191-199.	4.0	23

Sylvie Ribeiro

#	Article	IF	CITATIONS
19	Chitosan patterning on titanium implants. Progress in Organic Coatings, 2017, 111, 23-28.	1.9	21
20	Development of Magnetically Active Scaffolds for Bone Regeneration. Nanomaterials, 2018, 8, 678.	1.9	19
21	Multifunctional magnetically responsive biocomposites based on genetically engineered silk-elastin-like protein. Composites Part B: Engineering, 2018, 153, 413-419.	5.9	17
22	Multifunctional Platform Based on Electroactive Polymers and Silica Nanoparticles for Tissue Engineering Applications. Nanomaterials, 2018, 8, 933.	1.9	16
23	Development of bio-hybrid piezoresistive nanocomposites using silk-elastin protein copolymers. Composites Science and Technology, 2019, 172, 134-142.	3.8	14
24	Tuning Myoblast and Preosteoblast Cell Adhesion Site, Orientation, and Elongation through Electroactive Micropatterned Scaffolds. ACS Applied Bio Materials, 2019, 2, 1591-1602.	2.3	14
25	Hydrolytic degradation and cytotoxicity of poly(lacticâ€ <i>co</i> â€glycolic acid)/multiwalled carbon nanotubes for bone regeneration. Journal of Applied Polymer Science, 2020, 137, 48439.	1.3	14
26	A New Approach for the Fabrication of Cytocompatible PLLA-Magnetite Nanoparticle Composite Scaffolds. International Journal of Molecular Sciences, 2019, 20, 4664.	1.8	10
27	Cytocompatible scaffolds of poly(L-lactide)/reduced graphene oxide for tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1406-1419.	1.9	10
28	Effect of bacterial nanocellulose binding on the bactericidal activity of bovine lactoferrin. Heliyon, 2020, 6, e04372.	1.4	9
29	Understanding Myoblast Differentiation Pathways When Cultured on Electroactive Scaffolds through Proteomic Analysis. ACS Applied Materials & amp; Interfaces, 2022, 14, 26180-26193.	4.0	9
30	Electroactive functional microenvironments from bioactive polymers: A new strategy to address cancer. , 2022, 137, 212849.		4
31	Multidimensional Biomechanics Approaches Though Electrically and Magnetically Active Microenvironments. , 2019, , 253-267.		3