
Yaopeng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5829722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid Silk Fibers Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions. ACS Applied Materials & Interfaces, 2016, 8, 3349-3358.	4.0	128
2	3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering. Materials Science and Engineering C, 2019, 103, 109731.	3.8	116
3	Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohydrate Polymers, 2019, 221, 146-156.	5.1	113
4	Reinforced and Ultraviolet Resistant Silks from Silkworms Fed with Titanium Dioxide Nanoparticles. ACS Sustainable Chemistry and Engineering, 2015, 3, 2551-2557.	3.2	89
5	Electrospinning and rheology of regenerated Bombyx mori silk fibroin aqueous solutions: The effects of pH and concentration. Polymer, 2008, 49, 2880-2885.	1.8	84
6	Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip. Scientific Reports, 2016, 6, 36473.	1.6	81
7	Significantly Reinforced Composite Fibers Electrospun from Silk Fibroin/Carbon Nanotube Aqueous Solutions. Biomacromolecules, 2012, 13, 2859-2867.	2.6	80
8	Tough silk fibers prepared in air using a biomimetic microfluidic chip. International Journal of Biological Macromolecules, 2014, 66, 319-324.	3.6	79
9	Single Molecular Layer of Silk Nanoribbon as Potential Basic Building Block of Silk Materials. ACS Nano, 2018, 12, 11860-11870.	7.3	79
10	Pulse-driven bio-triboelectric nanogenerator based on silk nanoribbons. Nano Energy, 2020, 74, 104837.	8.2	76
11	The structure–property relationships of artificial silk fabricated by dry-spinning process. Journal of Materials Chemistry, 2012, 22, 18372.	6.7	70
12	Electrospun ultra-fine silk fibroin fibers from aqueous solutions. Journal of Materials Science, 2005, 40, 5359-5363.	1.7	68
13	Preparation of regenerated silk fibroin/silk sericin fibers by coaxial electrospinning. International Journal of Biological Macromolecules, 2012, 51, 980-986.	3.6	68
14	Bio-inspired capillary dry spinning of regenerated silk fibroin aqueous solution. Materials Science and Engineering C, 2011, 31, 1602-1608.	3.8	67
15	Electrospun regenerated silk fibroin mats with enhanced mechanical properties. International Journal of Biological Macromolecules, 2013, 56, 83-88.	3.6	65
16	Nanoconfined crystallites toughen artificial silk. Journal of Materials Chemistry B, 2014, 2, 1408.	2.9	63
17	Evaluation of stretched electrospun silk fibroin matrices seeded with urothelial cells for urethra reconstruction. Journal of Surgical Research, 2013, 184, 774-781.	0.8	58
18	Tissue-engineered buccal mucosa using silk fibroin matrices for urethral reconstruction in a canine model. Journal of Surgical Research, 2014, 188, 1-7.	0.8	57

#	Article	IF	CITATIONS
19	Silk scaffolds with gradient pore structure and improved cell infiltration performance. Materials Science and Engineering C, 2019, 94, 179-189.	3.8	51
20	Formation and Characterization of Cellulose Membranes fromN-Methylmorpholine-N-oxide Solution. Macromolecular Bioscience, 2001, 1, 141-148.	2.1	49
21	Mesenchymal Stem Cell-Seeded Regenerated Silk Fibroin Complex Matrices for Liver Regeneration in an Animal Model of Acute Liver Failure. ACS Applied Materials & Interfaces, 2017, 9, 14716-14723.	4.0	47
22	Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration. Journal of Materials Chemistry B, 2017, 5, 3640-3650.	2.9	47
23	A study on the flow stability of regenerated silk fibroin aqueous solution. International Journal of Biological Macromolecules, 2005, 36, 66-70.	3.6	45
24	Laminin-Coated Electrospun Regenerated Silk Fibroin Mats Promote Neural Progenitor Cell Proliferation, Differentiation, and Survival in vitro. Frontiers in Bioengineering and Biotechnology, 2019, 7, 190.	2.0	44
25	Silk materials for medical, electronic and optical applications. Science China Technological Sciences, 2019, 62, 903-918.	2.0	43
26	Studies on the post-treatment of the dry-spun fibers from regenerated silk fibroin solution: Post-treatment agent and method. Materials & Design, 2012, 36, 816-822.	5.1	42
27	Strong Silk Fibers Containing Cellulose Nanofibers Generated by a Bioinspired Microfluidic Chip. ACS Sustainable Chemistry and Engineering, 2019, 7, 14765-14774.	3.2	42
28	Graphene trapped silk scaffolds integrate high conductivity and stability. Carbon, 2019, 148, 16-27.	5.4	42
29	Biodegradable silk fibroin-based bio-piezoelectric/triboelectric nanogenerators as self-powered electronic devices. Nano Energy, 2022, 96, 107101.	8.2	41
30	Vacuum membrane distillation by microchip with temperature gradient. Lab on A Chip, 2010, 10, 899.	3.1	40
31	3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cells. Cellulose, 2021, 28, 241-257.	2.4	39
32	The bioaerosols emitted from toilet and wastewater treatment plant: a literature review. Environmental Science and Pollution Research, 2021, 28, 2509-2521.	2.7	39
33	Silk Fibroin-Based Scaffolds with Controlled Delivery Order of VEGF and BDNF for Cavernous Nerve Regeneration. ACS Biomaterials Science and Engineering, 2016, 2, 2018-2025.	2.6	37
34	High-Performance Microsupercapacitors Based on Bioinspired Graphene Microfibers. ACS Applied Materials & Interfaces, 2018, 10, 10157-10164.	4.0	37
35	Studies on the synthesis and thermal properties of copoly(L-lactic acid/glycolic acid) by direct melt polycondensation. Journal of Applied Polymer Science, 2004, 92, 2163-2168.	1.3	36
36	Solubility and rheological behavior of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide. International Journal of Biological Macromolecules, 2005, 35, 155-161.	3.6	36

#	Article	IF	CITATIONS
37	Dual-factor loaded functional silk fibroin scaffolds for peripheral nerve regeneration with the aid of neovascularization. RSC Advances, 2016, 6, 7683-7691.	1.7	36
38	Highly oriented lamellar polyaniline with short-range disorder for enhanced electrochromic performance. Chemical Engineering Journal, 2021, 417, 128126.	6.6	36
39	Posttreatment of the dry-spun fibers obtained from regenerated silk fibroin aqueous solution in ethanol aqueous solution. Journal of Materials Research, 2011, 26, 1100-1106.	1.2	35
40	Role of humidity on the structures and properties of regenerated silk fibers. Progress in Natural Science: Materials International, 2015, 25, 430-436.	1.8	33
41	Low-loss light-guiding, strong silk generated by a bioinspired microfluidic chip. Chemical Engineering Journal, 2021, 405, 126793.	6.6	32
42	Tissue performance of bladder following stretched electrospun silk fibroin matrix and bladder acellular matrix implantation in a rabbit model. Journal of Biomedical Materials Research - Part A, 2016, 104, 9-16.	2.1	30
43	Lamellar and fibrillar structure evolution of poly(ethylene terephthalate) fiber in thermal annealing. Polymer, 2016, 105, 157-166.	1.8	29
44	Intrinsically Fluorescent Silks from Silkworms Fed with Rare-Earth Upconverting Phosphors. ACS Biomaterials Science and Engineering, 2018, 4, 4021-4027.	2.6	29
45	Electrospun regenerated <i>Antheraea pernyi</i> silk fibroin scaffolds with improved pore size, mechanical properties and cytocompatibility using mesh collectors. Journal of Materials Chemistry B, 2021, 9, 5514-5527.	2.9	29
46	Super-strong and Intrinsically Fluorescent Silkworm Silk from Carbon Nanodots Feeding. Nano-Micro Letters, 2019, 11, 75.	14.4	28
47	Vacuum membrane distillation on a microfluidic chip. Chemical Communications, 2009, , 2750.	2.2	27
48	Employing Lactam Copolymerization Strategy to Effectively Achieve Pure Organic Roomâ€Temperature Phosphorescence in Amorphous State. Advanced Optical Materials, 2019, 7, 1901277.	3.6	27
49	The Development of Fibers That Mimic the Core–Sheath and Spindleâ€Knot Morphology of Artificial Silk Using Microfluidic Devices. Macromolecular Materials and Engineering, 2017, 302, 1700102.	1.7	26
50	Studies on spinning and rheological behaviors of regenerated silk fibroin/N-methylmorpholine-N-oxide·H2O solutions. Journal of Materials Science, 2005, 40, 5355-5358.	1.7	25
51	A simple process for dry spinning of regenerated silk fibroin aqueous solution. Journal of Materials Research, 2013, 28, 2897-2902.	1.2	25
52	Silk fibroin/reduced graphene oxide composite mats with enhanced mechanical properties and conductivity for tissue engineering. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111444.	2.5	25
53	Unconventional Spidroin Assemblies in Aqueous Dope for Spinning into Tough Synthetic Fibers. ACS Biomaterials Science and Engineering, 2021, 7, 3608-3617.	2.6	25
54	Bio-memristors based on silk fibroin. Materials Horizons, 2021, 8, 3281-3294.	6.4	25

#	Article	IF	CITATIONS
55	Effects of dynamic mechanical stimulations on the regeneration of in vitro and in vivo cartilage tissue based on silk fibroin scaffold. Composites Part B: Engineering, 2022, 235, 109764.	5.9	25
56	A microchannel concentrator controlled by integral thermoresponsive valves. Sensors and Actuators B: Chemical, 2008, 129, 481-486.	4.0	24
57	A bio-inspired microfluidic concentrator for regenerated silk fibroin solution. Sensors and Actuators B: Chemical, 2012, 162, 435-440.	4.0	24
58	Highly Strong and Conductive Carbon Fibers Originated from Bioinspired Lignin/Nanocellulose Precursors Obtained by Flow-Assisted Alignment and In Situ Interfacial Complexation. ACS Sustainable Chemistry and Engineering, 2021, 9, 2591-2599.	3.2	24
59	In vitro studies on the structure and properties of silk fibroin aqueous solutions in silkworm. International Journal of Biological Macromolecules, 2013, 62, 162-166.	3.6	22
60	Influence of γ-ray radiation on the structure and properties of paper grade bamboo pulp. Carbohydrate Polymers, 2010, 81, 114-119.	5.1	21
61	Tough and VEGF-releasing scaffolds composed of artificial silk fibroin mats and a natural acellular matrix. RSC Advances, 2015, 5, 16748-16758.	1.7	21
62	Bladder Acellular Matrix Graft Reinforced Silk Fibroin Composite Scaffolds Loaded VEGF with Aligned Electrospun Fibers in Multiple Layers. ACS Biomaterials Science and Engineering, 2015, 1, 238-246.	2.6	20
63	Biomaterial-Based Scaffolds as Antibacterial Suture Materials. ACS Biomaterials Science and Engineering, 2020, 6, 3154-3161.	2.6	20
64	Preparation and characterization of electrospun silk fibroin/sericin blend fibers. Journal of Materials Research, 2011, 26, 2931-2937.	1.2	19
65	Silk fibroin tissue engineering scaffolds with aligned electrospun fibers in multiple layers. RSC Advances, 2014, 4, 47570-47575.	1.7	19
66	3D Printed Gelatin Scaffold with Improved Shape Fidelity and Cytocompatibility by Using Antheraea pernyi Silk Fibroin Nanofibers. Advanced Fiber Materials, 2022, 4, 758-773.	7.9	19
67	Strain-induced structural evolution during drawing of poly(ethylene terephthalate) fiber at different temperatures by in situ synchrotron SAXS and WAXD. Polymer, 2017, 119, 185-194.	1.8	18
68	Characterization of bladder acellular matrix hydrogel with inherent bioactive factors. Materials Science and Engineering C, 2017, 77, 184-189.	3.8	18
69	A comparative study of bamboo Lyocell fiber and other regenerated cellulose fibers 2 nd ICC 2007, Tokyo, Japan, October 25–29, 2007. Holzforschung, 2009, 63, 18-22.	0.9	17
70	Natural polymer-based bioabsorbable conducting wires for implantable bioelectronic devices. Journal of Materials Chemistry A, 2020, 8, 25323-25335.	5.2	17
71	One-Step Approach to Prepare Transparent Conductive Regenerated Silk Fibroin/PEDOT:PSS Films for Electroactive Cell Culture. ACS Applied Materials & amp; Interfaces, 2022, 14, 123-137.	4.0	17
72	A flap-type hydrogel actuator with fast responses to temperature. Smart Materials and Structures, 2007, 16, 2175-2182.	1.8	16

#	Article	IF	CITATIONS
73	Antheraea pernyiSilk Fiber: A Potential Resource for Artificially Biospinning Spider Dragline Silk. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-8.	3.0	16
74	All-Organic Conductive Biomaterial as an Electroactive Cell Interface. ACS Applied Materials & Interfaces, 2018, 10, 35547-35556.	4.0	16
75	Selective adsorption and fluorescence sensing of tetracycline by Zn-mediated chitosan non-woven fabric. Journal of Colloid and Interface Science, 2021, 603, 418-429.	5.0	16
76	Integrated microfluidic device for the spherical hydrogel pH sensor fabrication. RSC Advances, 2016, 6, 11204-11210.	1.7	15
77	Prevascularized bladder acellular matrix hydrogel/silk fibroin composite scaffolds promote the regeneration of urethra in a rabbit model. Biomedical Materials (Bristol), 2019, 14, 015002.	1.7	15
78	Tunable Structures and Properties of Electrospun Regenerated Silk Fibroin Mats Annealed in Water Vapor at Different Times and Temperatures. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	14
79	Structure and interaction of silk fibroin and graphene oxide in concentrated solution under shear. International Journal of Biological Macromolecules, 2018, 107, 2590-2597.	3.6	14
80	Application of Fenton pre-oxidation, Ca-induced coagulation, and sludge reclamation for enhanced treatment of ultra-high concentration poly(vinyl alcohol) wastewater. Journal of Hazardous Materials, 2020, 389, 121866.	6.5	14
81	Low-Power and Tunable-Performance Biomemristor Based on Silk Fibroin. ACS Biomaterials Science and Engineering, 2021, 7, 3459-3468.	2.6	14
82	Flow Analysis of Regenerated Silk Fibroin/Cellulose Nanofiber Suspensions via a Bioinspired Microfluidic Chip. Advanced Materials Technologies, 2021, 6, 2100124.	3.0	14
83	Atomic force microscopy of cellulose membranes prepared from theN-methylmorpholine-N-oxide/water solvent system. Journal of Applied Polymer Science, 2002, 86, 3389-3395.	1.3	13
84	Insights into process–structure–property relationships of poly(ethylene terephthalate) industrial yarns by synchrotron radiation <scp>WAXD</scp> and <scp>SAXS</scp> . Journal of Applied Polymer Science, 2015, 132, .	1.3	13
85	Microstructural evolution of regenerated silk fibroin/graphene oxide hybrid fibers under tensile deformation. RSC Advances, 2017, 7, 3108-3116.	1.7	13
86	The influence of short chain branch on formation of shear induced crystals in bimodal polyethylene at high shear temperatures. European Polymer Journal, 2018, 105, 359-369.	2.6	13
87	Fabrication and characterization of regenerated Antheraea pernyi silk fibroin scaffolds for Schwann cell culturing. European Polymer Journal, 2019, 117, 123-133.	2.6	13
88	Super-strong and uniform fluorescent composite silk from trace AIE nanoparticle feeding. Composites Communications, 2020, 21, 100414.	3.3	13
89	3D-printed strong hybrid materials with low shrinkage for dental restoration. Composites Science and Technology, 2021, 213, 108902.	3.8	13
90	Determination of Molecular Weight of Silk Fibroin by Non-Gel Sieving Capillary Electrophoresis. Journal of AOAC INTERNATIONAL, 2010, 93, 1143-1147.	0.7	12

#	Article	IF	CITATIONS
91	Effects of compound stimulation of fluid shear stress plus ultrasound on stem cell proliferation and osteogenesis. International Journal of Energy Production and Management, 2021, 8, rbab066.	1.9	12
92	3Dâ€Printed Strong Dental Crown with Multiâ€Scale Ordered Architecture, Highâ€Precision, and Bioactivity. Advanced Science, 2022, 9, e2104001.	5.6	12
93	Prediction of molecular weight distribution of cellulose by using the rheological method. Journal of Applied Polymer Science, 2004, 94, 598-603.	1.3	11
94	Influence of shear on the structures and properties of regenerated silk fibroin aqueous solutions. RSC Advances, 2015, 5, 62936-62940.	1.7	11
95	Sustained release of stromal cell–derived factorâ€1 alpha from silk fibroin microfiber promotes urethral reconstruction in rabbits. Journal of Biomedical Materials Research - Part A, 2020, 108, 1760-1773.	2.1	11
96	Inkjet printing of 2D polyaniline for fabricating flexible and patterned electrochromic devices. Science China Materials, 2022, 65, 2217-2226.	3.5	10
97	Water-stable and finasteride-loaded polyvinyl alcohol nanofibrous particles with sustained drug release for improved prostatic artery embolization $\hat{a} \in $ " In vitro and in vivo evaluation. Materials Science and Engineering C, 2020, 115, 111107.	3.8	9
98	Synthesis of novel thioxanthone-containing macromolecular photosensitizer and its photocatalytic property. Polymer, 2019, 174, 101-108.	1.8	8
99	Transparent Conductive Silk Film with a PEDOT–OH Nano Layer as an Electroactive Cell Interface. ACS Biomaterials Science and Engineering, 2021, 7, 1202-1215.	2.6	8
100	A trade-off between antifouling and the electrochemical stabilities of PEDOTs. Journal of Materials Chemistry B, 2021, 9, 2717-2726.	2.9	7
101	Shear induced crystallization of bimodal and unimodal high density polyethylene. Polymer, 2018, 153, 223-231.	1.8	6
102	Angiogenesis Potential of Bladder Acellular Matrix Hydrogel by Compounding Endothelial Cells. ACS Applied Bio Materials, 2019, 2, 1158-1167.	2.3	6
103	Effects of environment parameters on sol-gel transition and dry-spinnability of regenerated silk fibroin aqueous solution. Fibers and Polymers, 2014, 15, 540-546.	1.1	4
104	Dual-wavelength fluorescent anti-counterfeiting fibers with skin-core structure. Journal of Polymer Engineering, 2020, 40, 143-151.	0.6	4
105	Electrospun regenerated silk fibroin is a promising biomaterial for the maintenance of inner ear progenitors in vitro. Journal of Biomaterials Applications, 2022, 36, 1164-1172.	1.2	3
106	Intrinsically ionic conductive nanofibrils for ultra-thin bio-memristor with low operating voltage. Science China Materials, 2022, 65, 3096-3104.	3.5	3
107	The Chain Orientation of Cellulose Flat and Tubular Films Prepared from N-Methylmorpholine N-Oxide Solutions. Polymer Journal, 2002, 34, 666-673.	1.3	2
108	Nd(OTf)3-catalyzed intramolecular-intermolecular cascade cyclization reaction: An access to phenanthro[9,10-b]furan derivatives. Journal of Saudi Chemical Society, 2019, 23, 1041-1048.	2.4	2

#	Article	IF	CITATIONS
109	Iron-catalyzed synthesis of phenanthrenes via intramolecular hydroarylation of arene-alkynes. Journal of Saudi Chemical Society, 2019, 23, 967-972.	2.4	2
110	High-Frequency Synchronization Improves Firing Rate Contrast and Information Transmission Efficiency in E/I Neuronal Networks. Neural Plasticity, 2020, 2020, 1-11.	1.0	2
111	The Analyses of High Infectivity Mechanism of SARS-CoV-2 and Its Variants. Covid, 2021, 1, 666-673.	0.7	2
112	Artificial Silk Materials with Enhanced Mechanical Properties and Controllable Structures. International Journal of the Society of Materials Engineering for Resources, 2014, 20, 1-5.	0.1	1
113	Microfluidic Dry-spinning and Characterization of Regenerated Silk Fibroin Fibers. Journal of Visualized Experiments, 2017, , .	0.2	1
114	Role of angiogenesis in bladder tissue engineering. , 2022, , 463-490.		0