Jian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5829527/publications.pdf Version: 2024-02-01

LIAN ZHANC

#	Article	IF	CITATIONS
1	Synthesis of MeON-Glycoside Derivatives of Oleanolic Acid by Neoglycosylation and Evaluation of Their Cytotoxicity against Selected Cancer Cell Lines. Molecules, 2021, 26, 772.	3.8	5
2	Design, Synthesis and Biological Evaluation of Steroidal Glycoconjugates as Potential Antiproliferative Agents. ChemMedChem, 2021, 16, 1488-1498.	3.2	3
3	A versatile tailoring tool for pentacyclic triterpenes of Penicillium griseofulvum CICC 40293. Phytochemistry Letters, 2021, 44, 195-201.	1.2	2
4	Application of tandem biotransformation for biosynthesis of new pentacyclic triterpenoid derivatives with neuroprotective effect. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126947.	2.2	11
5	New 30-norlupane derivatives through chemical-microbial semi-synthesis of betulinic acid and their neuroprotective effect. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127407.	2.2	8
6	Biotransformation of Erythrodiol for New Food Supplements with Anti-Inflammatory Properties. Journal of Agricultural and Food Chemistry, 2020, 68, 5910-5916.	5.2	9
7	Biocatalytic allylic hydroxylation of unsaturated triterpenes and steroids by Bacillus megaterium CGMCC 1.1741. Bioorganic Chemistry, 2020, 99, 103826.	4.1	6
8	Microbial transformation of glycyrrhetinic acid derivatives by Bacillus subtilis ATCC 6633 and Bacillus megaterium CGMCC 1.1741. Bioorganic and Medicinal Chemistry, 2020, 28, 115465.	3.0	3
9	Enzyme-Catalyzed Glycosylation of Curcumin and Its Analogues by Glycosyltransferases from Bacillus subtilis ATCC 6633. Catalysts, 2019, 9, 734.	3.5	10
10	Chemical synthesis, microbial transformation and biological evaluation of tetrahydroprotoberberines as dopamine D1/D2 receptor ligands. Bioorganic and Medicinal Chemistry, 2019, 27, 2100-2111.	3.0	10
11	Synthesis of tigogenin MeON-Neoglycosides and their antitumor activity. Fìtoterapìâ, 2018, 125, 33-40.	2.2	13
12	Microbial hydroxylation and glycosylation of pentacyclic triterpenes as inhibitors on tissue factor procoagulant activity. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1026-1030.	2.2	10
13	Site-selective biotransformation of ursane triterpenes by Streptomyces griseus ATCC 13273. RSC Advances, 2017, 7, 20754-20759.	3.6	9
14	Site-selective oxidation of unactivated C–H sp bonds of oleanane triterpenes by Streptomyces griseus ATCC 13273. Tetrahedron, 2017, 73, 3086-3092.	1.9	14
15	Molecular cloning and expression of a glycosyltransferase from Bacillus subtilis for modification of morin and related polyphenols. Biotechnology Letters, 2017, 39, 1229-1235.	2.2	3
16	Microbial Catalyzed Regio-Selective Demethylation of Colchicine by Streptomyces griseus ATCC 13273. Applied Biochemistry and Biotechnology, 2017, 183, 1026-1034.	2.9	4
17	New derivatives of ursolic acid through the biotransformation by Bacillus megaterium CGMCC 1.1741 as inhibitors on nitric oxide production. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2575-2578.	2.2	29
18	Levo-Tetrahydroberberrubine Produces Anxiolytic-Like Effects in Mice through the 5-HT1A Receptor. PLoS ONE, 2017, 12, e0168964.	2.5	13

JIAN ZHANG

#	Article	IF	CITATIONS
19	Diversity synthesis of tetrahydroprotoberberines glycosides by combined chemical and microbial catalysis. Chinese Journal of Natural Medicines, 2016, 14, 783-788.	1.3	1
20	Chemical and microbial semi-synthesis of tetrahydroprotoberberines as inhibitors on tissue factor procoagulant activity. Bioorganic and Medicinal Chemistry, 2013, 21, 62-69.	3.0	27
21	Regio- and enantio-selective glycosylation of tetrahydroprotoberberines by Gliocladium deliquescens NRRL1086 resulting in unique alkaloidal glycosides. Applied Microbiology and Biotechnology, 2012, 93, 2357-2364.	3.6	17
22	New approaches to the structural modification of olean-type pentacylic triterpenes via microbial oxidation and glycosylation. Tetrahedron, 2011, 67, 4206-4211.	1.9	27
23	Direct microbial-catalyzed asymmetric α-hydroxylation of betulonic acid by Nocardia sp. NRRL 5646. Tetrahedron Letters, 2009, 50, 2193-2195.	1.4	26