Jose G Macia-Vicente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5829306/publications.pdf

Version: 2024-02-01

42 papers 1,561 citations

393982 19 h-index 37 g-index

47 all docs

47 docs citations

47 times ranked

1971 citing authors

#	Article	IF	CITATIONS
1	Local endemism and ecological generalism in the assembly of rootâ€colonizing fungi. Ecological Monographs, 2022, 92, e01489.	2.4	16
2	Fungi Living in Plant Roots have Low Habitat and Host Specificities, But Highly Restricted Distributions. Bulletin of the Ecological Society of America, 2022, 103, .	0.2	1
3	<i>Leptodophora</i> gen. nov. (<i>Helotiales</i> , <i>Leotiomycetes</i>) proposed to accommodate selected root-associated members of the genus <i>Cadophora</i> Czech Mycology, 2022, 74, 57-66.	0.2	2
4	Deciphering the role of specialist and generalist plant–microbial interactions as drivers of plant–soil feedback. New Phytologist, 2022, 234, 1929-1944.	3.5	63
5	Nutrient Availability Does Not Affect Community Assembly in Root-Associated Fungi but Determines Fungal Effects on Plant Growth. MSystems, 2022, 7, .	1.7	5
6	Fungal Planet description sheets: 1182–1283. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2021, , .	1.6	40
7	The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Diversity, 2021, 111, 573-588.	4.7	42
8	Multilocus phylogeny- and fruiting feature-assisted delimitation of European Cyclocybe aegerita from a new Asian species complex and related species. Mycological Progress, 2020, 19, 1001-1016.	0.5	15
9	Fungal Planet description sheets: 1042–1111. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2020, 44, 301-459.	1.6	91
10	Brassicaceous roots as an unexpected diversity hot-spot of helotialean endophytes. IMA Fungus, 2020, 11, 16.	1.7	15
11	Mapping mycological ignorance – checklists and diversity patterns of fungi known for West Africa. IMA Fungus, 2020, 11, 13.	1.7	17
12	Diversity of Fungi in Soils with Different Degrees of Degradation in Germany and Panama. Mycobiology, 2020, 48, 20-28.	0.6	12
13	Root filtering, rather than host identity or age, determines the composition of root-associated fungi and oomycetes in three naturally co-occurring Brassicaceae. Soil Biology and Biochemistry, 2020, 146, 107806.	4.2	28
14	$(\hat{A}\pm)$ -Alternarlactones A and B, Two Antiparasitic Alternariol-like Dimers from the Fungus Alternaria alternata P1210 Isolated from the Halophyte Salicornia sp Journal of Organic Chemistry, 2019, 84, 11203-11209.	1.7	17
15	Orchard Conditions and Fruiting Body Characteristics Drive the Microbiome of the Black Truffle Tuber aestivum. Frontiers in Microbiology, 2019, 10, 1437.	1.5	31
16	Out of Transcaucasia: Origin of Western and Central Palearctic populations of Microthlaspi perfoliatum. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 253, 127-141.	0.6	11
17	Root endophytic fungi show low levels of interspecific competition in planta. Fungal Ecology, 2019, 39, 184-191.	0.7	13
18	Metabolomicsâ€based chemotaxonomy of root endophytic fungi for natural products discovery. Environmental Microbiology, 2018, 20, 1253-1270.	1.8	24

#	Article	IF	Citations
19	Temporal variation of fungal diversity in a mosaic landscape in Germany. Studies in Mycology, 2018, 89, 95-104.	4.5	23
20	The effects of fungal root endophytes on plant growth are stable along gradients of abiotic habitat conditions. FEMS Microbiology Ecology, 2018, 94, .	1.3	11
21	Inhabiting plant roots, nematodes, and truffles— <i>Polyphilus</i> , a new helotialean genus with two globally distributed species. Mycologia, 2018, 110, 286-299.	0.8	25
22	Facultative rootâ€colonizing fungi dominate endophytic assemblages in roots of nonmycorrhizal <i>Microthlaspi</i> species. New Phytologist, 2018, 217, 1190-1202.	3.5	70
23	Host species identity in annual Brassicaceae has a limited effect on the assembly of root-endophytic fungal communities. Plant Ecology and Diversity, 2018, 11, 569-580.	1.0	16
24	Fungi Indirectly Affect Plant Root Architecture by Modulating Soil Volatile Organic Compounds. Frontiers in Microbiology, 2018, 9, 1847.	1.5	36
25	Endophytic fungi associated with roots of date palm (Phoenix dactylifera) in coastal dunes. Revista lberoamericana De Micologia, 2017, 34, 116-120.	0.4	23
26	Genetic patterns reflecting Pleistocene range dynamics in the annual calcicole plant Microthlaspi erraticum across its Eurasian range. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 236-237, 132-142.	0.6	11
27	Genotypic diversity in rootâ€endophytic fungi reflects efficient dispersal and environmental adaptation. Molecular Ecology, 2017, 26, 4618-4630.	2.0	12
28	Influence of phylogenetic conservatism and trait convergence on the interactions between fungal root endophytes and plants. ISME Journal, 2017, 11, 777-790.	4.4	63
29	The local environment determines the assembly of root endophytic fungi at a continental scale. Environmental Microbiology, 2016, 18, 2418-2434.	1.8	123
30	Distinguishing commercially grown Ganoderma lucidum from Ganoderma lingzhi from Europe and East Asia on the basis of morphology, molecular phylogeny, and triterpenic acid profiles. Phytochemistry, 2016, 127, 29-37.	1.4	70
31	Low diversity and abundance of root endophytes prevail throughout the life cycle of an annual halophyte. Mycological Progress, 2016, 15, 1303-1311.	0.5	11
32	A new species of Exophiala associated with roots. Mycological Progress, 2016, 15, 1.	0.5	22
33	Diversity of exophillic acid derivatives in strains of an endophytic Exophiala sp Phytochemistry, 2015, 118, 83-93.	1.4	13
34	Fungal Assemblages Associated with Roots of Halophytic and Non-halophytic Plant Species Vary Differentially Along a Salinity Gradient. Microbial Ecology, 2012, 64, 668-679.	1.4	65
35	New Insights on the Mode of Action of Fungal Pathogens of Invertebrates for Improving Their Biocontrol Performance., 2011,, 203-225.		2
36	Assessing fungal root colonization for plant improvement. Plant Signaling and Behavior, 2009, 4, 445-447.	1.2	9

#	Article	IF	CITATIONS
37	Colonisation of barley roots by endophytic <i>Fusarium equiseti</i> and <i>Pochonia chlamydosporia</i> : Effects on plant growth and disease. Annals of Applied Biology, 2009, 155, 391-401.	1.3	117
38	Realâ€time PCR quantification and liveâ€cell imaging of endophytic colonization of barley (<i>Hordeum) Tj ETQqQ 2009, 182, 213-228.</i>	0 0 rgBT 3.5	/Overlock 10
39	Plant symbioses with fungal endophytes: perspectives on conservation and sustainable exploitation of Mediterranean ecosystems. Mediterr \tilde{A}_i nea Serie De Estudios Biol \tilde{A}^3 gicos, 2009, , .	0.2	1
40	Fungal root endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium spp. FEMS Microbiology Ecology, 2008, 64, 90-105.	1.3	132
41	Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. <i>tritici</i> . Canadian Journal of Microbiology, 2008, 54, 600-609.	0.8	67
42	Mode of Action and Interactions of Nematophagous Fungi. , 2008, , 51-76.		58