Jose G Macia-Vicente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5829306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fungal root endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium spp. FEMS Microbiology Ecology, 2008, 64, 90-105.	1.3	132
2	The local environment determines the assembly of root endophytic fungi at a continental scale. Environmental Microbiology, 2016, 18, 2418-2434.	1.8	123
3	Colonisation of barley roots by endophytic <i>Fusarium equiseti</i> and <i>Pochonia chlamydosporia</i> : Effects on plant growth and disease. Annals of Applied Biology, 2009, 155, 391-401.	1.3	117
4	Realâ€ŧime PCR quantification and liveâ€cell imaging of endophytic colonization of barley (<i>Hordeum) Tj ETQqC 2009, 182, 213-228.</i>) 0 0 rgBT 3.5	/Overlock] 112
5	Fungal Planet description sheets: 1042–1111. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2020, 44, 301-459.	1.6	91
6	Distinguishing commercially grown Ganoderma lucidum from Ganoderma lingzhi from Europe and East Asia on the basis of morphology, molecular phylogeny, and triterpenic acid profiles. Phytochemistry, 2016, 127, 29-37.	1.4	70
7	Facultative rootâ€colonizing fungi dominate endophytic assemblages in roots of nonmycorrhizal <i>Microthlaspi</i> species. New Phytologist, 2018, 217, 1190-1202.	3.5	70
8	Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. <i>tritici</i> . Canadian Journal of Microbiology, 2008, 54, 600-609.	0.8	67
9	Fungal Assemblages Associated with Roots of Halophytic and Non-halophytic Plant Species Vary Differentially Along a Salinity Gradient. Microbial Ecology, 2012, 64, 668-679.	1.4	65
10	Influence of phylogenetic conservatism and trait convergence on the interactions between fungal root endophytes and plants. ISME Journal, 2017, 11, 777-790.	4.4	63
11	Deciphering the role of specialist and generalist plant–microbial interactions as drivers of plant–soil feedback. New Phytologist, 2022, 234, 1929-1944.	3.5	63
12	Mode of Action and Interactions of Nematophagous Fungi. , 2008, , 51-76.		58
13	The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Diversity, 2021, 111, 573-588.	4.7	42
14	Fungal Planet description sheets: 1182–1283. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2021, , .	1.6	40
15	Fungi Indirectly Affect Plant Root Architecture by Modulating Soil Volatile Organic Compounds. Frontiers in Microbiology, 2018, 9, 1847.	1.5	36
16	Orchard Conditions and Fruiting Body Characteristics Drive the Microbiome of the Black Truffle Tuber aestivum. Frontiers in Microbiology, 2019, 10, 1437.	1.5	31
17	Root filtering, rather than host identity or age, determines the composition of root-associated fungi and oomycetes in three naturally co-occurring Brassicaceae. Soil Biology and Biochemistry, 2020, 146, 107806.	4.2	28
18	Inhabiting plant roots, nematodes, and truffles— <i>Polyphilus</i> , a new helotialean genus with two globally distributed species. Mycologia, 2018, 110, 286-299.	0.8	25

JOSE G MACIA-VICENTE

#	Article	IF	CITATIONS
19	Metabolomicsâ€based chemotaxonomy of root endophytic fungi for natural products discovery. Environmental Microbiology, 2018, 20, 1253-1270.	1.8	24
20	Endophytic fungi associated with roots of date palm (Phoenix dactylifera) in coastal dunes. Revista Iberoamericana De Micologia, 2017, 34, 116-120.	0.4	23
21	Temporal variation of fungal diversity in a mosaic landscape in Germany. Studies in Mycology, 2018, 89, 95-104.	4.5	23
22	A new species of Exophiala associated with roots. Mycological Progress, 2016, 15, 1.	0.5	22
23	(±)-Alternarlactones A and B, Two Antiparasitic Alternariol-like Dimers from the Fungus Alternaria alternata P1210 Isolated from the Halophyte Salicornia sp Journal of Organic Chemistry, 2019, 84, 11203-11209.	1.7	17
24	Mapping mycological ignorance – checklists and diversity patterns of fungi known for West Africa. IMA Fungus, 2020, 11, 13.	1.7	17
25	Host species identity in annual Brassicaceae has a limited effect on the assembly of root-endophytic fungal communities. Plant Ecology and Diversity, 2018, 11, 569-580.	1.0	16
26	Local endemism and ecological generalism in the assembly of rootâ€colonizing fungi. Ecological Monographs, 2022, 92, e01489.	2.4	16
27	Multilocus phylogeny- and fruiting feature-assisted delimitation of European Cyclocybe aegerita from a new Asian species complex and related species. Mycological Progress, 2020, 19, 1001-1016.	0.5	15
28	Brassicaceous roots as an unexpected diversity hot-spot of helotialean endophytes. IMA Fungus, 2020, 11, 16.	1.7	15
29	Diversity of exophillic acid derivatives in strains of an endophytic Exophiala sp Phytochemistry, 2015, 118, 83-93.	1.4	13
30	Root endophytic fungi show low levels of interspecific competition in planta. Fungal Ecology, 2019, 39, 184-191.	0.7	13
31	Genotypic diversity in rootâ€endophytic fungi reflects efficient dispersal and environmental adaptation. Molecular Ecology, 2017, 26, 4618-4630.	2.0	12
32	Diversity of Fungi in Soils with Different Degrees of Degradation in Germany and Panama. Mycobiology, 2020, 48, 20-28.	0.6	12
33	Low diversity and abundance of root endophytes prevail throughout the life cycle of an annual halophyte. Mycological Progress, 2016, 15, 1303-1311.	0.5	11
34	Genetic patterns reflecting Pleistocene range dynamics in the annual calcicole plant Microthlaspi erraticum across its Eurasian range. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 236-237, 132-142.	0.6	11
35	The effects of fungal root endophytes on plant growth are stable along gradients of abiotic habitat conditions. FEMS Microbiology Ecology, 2018, 94,	1.3	11
36	Out of Transcaucasia: Origin of Western and Central Palearctic populations of Microthlaspi perfoliatum. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 253, 127-141.	0.6	11

JOSE G MACIA-VICENTE

#	Article	IF	CITATIONS
37	Assessing fungal root colonization for plant improvement. Plant Signaling and Behavior, 2009, 4, 445-447.	1.2	9
38	Nutrient Availability Does Not Affect Community Assembly in Root-Associated Fungi but Determines Fungal Effects on Plant Growth. MSystems, 2022, 7, .	1.7	5
39	New Insights on the Mode of Action of Fungal Pathogens of Invertebrates for Improving Their Biocontrol Performance. , 2011, , 203-225.		2
40	<i>Leptodophora</i> gen. nov. (<i>Helotiales</i> , <i>Leotiomycetes</i>) proposed to accommodate selected root-associated members of the genus <i>Cadophora</i> Czech Mycology, 2022, 74, 57-66.	0.2	2
41	Plant symbioses with fungal endophytes: perspectives on conservation and sustainable exploitation of Mediterranean ecosystems. Mediterránea Serie De Estudios Biológicos, 2009, , .	0.2	1
42	Fungi Living in Plant Roots have Low Habitat and Host Specificities, But Highly Restricted Distributions. Bulletin of the Ecological Society of America, 2022, 103, .	0.2	1