Shengwang Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5829180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	All-optical neural network with nonlinear activation functions. Optica, 2019, 6, 1132.	4.8	222
2	Efficient quantum memory for single-photon polarization qubits. Nature Photonics, 2019, 13, 346-351.	15.6	183
3	Electro-Optic Modulation of Single Photons. Physical Review Letters, 2008, 101, 103601.	2.9	179
4	Oxygenâ€Assisted Charge Transfer Between ZnO Quantum Dots and Graphene. Small, 2013, 9, 3031-3036.	5.2	174
5	Subnatural Linewidth Biphotons with Controllable Temporal Length. Physical Review Letters, 2008, 100, 183603.	2.9	171
6	A Mitochondrionâ€Specific Photoactivatable Fluorescence Turnâ€On AlEâ€Based Bioprobe for Localization Superâ€Resolution Microscope. Advanced Materials, 2016, 28, 5064-5071.	11.1	166
7	RIM and RIM-BP Form Presynaptic Active-Zone-like Condensates via Phase Separation. Molecular Cell, 2019, 73, 971-984.e5.	4.5	166
8	Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay. Physical Review Letters, 2013, 110, 083601.	2.9	164
9	Generation of Narrow-Bandwidth Paired Photons: Use of a Single Driving Laser. Physical Review Letters, 2006, 97, 113602.	2.9	142
10	Narrowband biphoton generation near atomic resonance. Journal of the Optical Society of America B: Optical Physics, 2008, 25, C98.	0.9	132
11	Four-Wave Mixing and Biphoton Generation in a Two-Level System. Physical Review Letters, 2007, 98, 053601.	2.9	110
12	Atom-chip Bose-Einstein condensation in a portable vacuum cell. Physical Review A, 2004, 70, .	1.0	93
13	Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell. Nature Communications, 2016, 7, 12783.	5.8	85
14	Electromagnetically induced Talbot effect. Applied Physics Letters, 2011, 98, .	1.5	79
15	Generation of Narrow-Band Hyperentangled Nondegenerate Paired Photons. Physical Review Letters, 2011, 106, 033601.	2.9	78
16	Optical Precursors with Electromagnetically Induced Transparency in Cold Atoms. Physical Review Letters, 2009, 103, 093602.	2.9	75
17	Piezotronic Effects on the Optical Properties of ZnO Nanowires. Nano Letters, 2012, 12, 5802-5807.	4.5	73
18	Anti-Parity-Time Symmetric Optical Four-Wave Mixing in Cold Atoms. Physical Review Letters, 2019, 123, 193604.	2.9	65

2

#	Article	IF	CITATIONS
19	Quantum Heat Engine Using Electromagnetically Induced Transparency. Physical Review Letters, 2017, 119, 050602.	2.9	64
20	A Distinct Pathway for Polar Exocytosis in Plant Cell Wall Formation Â. Plant Physiology, 2016, 172, 1003-1018.	2.3	61
21	Optimal storage and retrieval of single-photon waveforms. Optics Express, 2012, 20, 24124.	1.7	60
22	ATM and ATR play complementary roles in the behavior of excitatory and inhibitory vesicle populations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E292-E301.	3.3	58
23	Optical storage with electromagnetically induced transparency in a dense cold atomic ensemble. Optics Letters, 2011, 36, 4530.	1.7	57
24	A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth. Review of Scientific Instruments, 2012, 83, 073102.	0.6	57
25	Coherent Control of Single-Photon Absorption and Reemission in a Two-Level Atomic Ensemble. Physical Review Letters, 2012, 109, 263601.	2.9	57
26	Photon pairs with coherence time exceeding 1  μs. Optica, 2014, 1, 84.	4.8	57
27	Optical Precursor of a Single Photon. Physical Review Letters, 2011, 106, 243602.	2.9	56
28	Shaping Biphoton Temporal Waveforms with Modulated Classical Fields. Physical Review Letters, 2010, 104, 183604.	2.9	48
29	Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets. Scientific Reports, 2016, 6, 26159.	1.6	48
30	Observation of optical precursors at the biphoton level. Optics Letters, 2008, 33, 2149.	1.7	47
31	A user-friendly two-color super-resolution localization microscope. Optics Express, 2015, 23, 1879.	1.7	47
32	Efficiently Loading a Single Photon into a Single-Sided Fabry-Perot Cavity. Physical Review Letters, 2014, 113, 133601.	2.9	46
33	Subnatural-Linewidth Polarization-Entangled Photon Pairs with Controllable Temporal Length. Physical Review Letters, 2014, 112, 243602.	2.9	46
34	Four-wave mixing in three-level systems: Interference and entanglement. Physical Review A, 2007, 76, .	1.0	45
35	Cdk5-dependent phosphorylation of liprinα1 mediates neuronal activity-dependent synapse development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6992-E7001.	3.3	45
36	Biphoton generation in a two-level atomic ensemble. Physical Review A, 2007, 75, .	1.0	42

#	Article	IF	CITATIONS
37	Nonclassical light generation via a four-level inverted-Y system. Physical Review A, 2008, 77, .	1.0	42
38	Overlapped illusion optics: a perfect lens brings a brighter feature. New Journal of Physics, 2011, 13, 023010.	1.2	40
39	Shaping the Biphoton Temporal Waveform with Spatial Light Modulation. Physical Review Letters, 2015, 115, 193601.	2.9	40
40	Measuring the Biphoton Temporal Wave Function with Polarization-Dependent and Time-Resolved Two-Photon Interference. Physical Review Letters, 2015, 114, 010401.	2.9	38
41	Modulation and measurement of time-energy entangled photons. Physical Review A, 2009, 80, .	1.0	35
42	Testing the Bell inequality on frequency-bin entangled photon pairs using time-resolved detection. Optica, 2017, 4, 388.	4.8	35
43	Two-way transparency in the light-matter interaction: Optical precursors with electromagnetically induced transparency. Physical Review A, 2009, 79, .	1.0	34
44	Engineering biphoton wave packets with an electromagnetically induced grating. Physical Review A, 2010, 82, .	1.0	34
45	Two-photon interferences with degenerate and nondegenerate paired photons. Physical Review A, 2012, 85, .	1.0	31
46	Bright narrowband biphoton generation from a hot rubidium atomic vapor cell. Applied Physics Letters, 2017, 110, 161101.	1.5	31
47	GAS2L1 Is a Centriole-Associated Protein Required for Centrosome Dynamics and Disjunction. Developmental Cell, 2017, 40, 81-94.	3.1	31
48	Stacked Optical Precursors from Amplitude and Phase Modulations. Physical Review Letters, 2010, 104, 223602.	2.9	30
49	Narrowband biphoton generation in the group delay regime. Physical Review A, 2016, 93, .	1.0	29
50	Impairment of Inhibitory Synapse Formation and Motor Behavior in Mice Lacking the NL2 Binding Partner LHFPL4/GARLH4. Cell Reports, 2018, 23, 1691-1705.	2.9	29
51	Optical coherent transients in cold atoms: From free-induction decay to optical precursors. Physical Review A, 2010, 81, .	1.0	26
52	Spontaneous parametric down-conversion in a three-level system. Physical Review A, 2007, 76, .	1.0	25
53	Quantum-state purity of heralded single photons produced from frequency-anticorrelated biphotons. Physical Review A, 2015, 92, .	1.0	25
54	Raman spectroscopy of iodine molecules trapped in zeolite crystals. Applied Physics Letters, 2011, 98, .	1.5	24

#	Article	IF	CITATIONS
55	Visualization of Protein Sorting at the Trans-Golgi Network and Endosomes Through Super-Resolution Imaging. Frontiers in Cell and Developmental Biology, 2019, 7, 181.	1.8	24
56	Slow-light-induced interference with stacked optical precursors for square input pulses. Optics Letters, 2010, 35, 124.	1.7	23
57	ATM protein is located on presynaptic vesicles and its deficit leads to failures in synaptic plasticity. Journal of Neurophysiology, 2016, 116, 201-209.	0.9	22
58	Reversible Control of the Orientation of Iodine Molecules inside the AlPO ₄ -11 Crystals. Journal of Physical Chemistry C, 2012, 116, 4423-4430.	1.5	21
59	Tripartite entanglement generation via four-wave mixings: narrowband triphoton W state. Journal of the Optical Society of America B: Optical Physics, 2010, 27, A11.	0.9	20
60	Narrowband biphotons with polarization-frequency-coupled entanglement. Physical Review A, 2015, 91,	1.0	20
61	Development of in Planta Chemical Cross-Linking-Based Quantitative Interactomics in <i>Arabidopsis</i> . Journal of Proteome Research, 2018, 17, 3195-3213.	1.8	20
62	Temporally shaping biphoton wave packets with periodically modulated driving fields. Physical Review A, 2009, 79, .	1.0	19
63	Einstein-Podolsky-Rosen Energy-Time Entanglement of Narrow-Band Biphotons. Physical Review Letters, 2020, 124, 010509.	2.9	17
64	Electro-optical tunable time delay and advance in a silicon feedback-microring resonator. Optics Letters, 2011, 36, 1278.	1.7	16
65	Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma. Applied Physics Letters, 2011, 99,	1.5	16
66	Differential-phase-shift quantum key distribution using heralded narrow-band single photons. Optics Express, 2013, 21, 9505.	1.7	15
67	Efficient production of a narrow-line erbium magneto-optical trap with two-stage slowing. Physical Review A, 2020, 102, .	1.0	14
68	Scalability of All-Optical Neural Networks Based on Spatial Light Modulators. Physical Review Applied, 2021, 15, .	1.5	14
69	Quantum Squeezing and Sensing with Pseudo-Anti-Parity-Time Symmetry. Physical Review Letters, 2022, 128, 173602.	2.9	14
70	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Î</mml:mi></mml:math> -Quench Measurement of a Pure Quantum-State Wave Function. Physical Review Letters, 2019, 123, 190402.	2.9	13
71	Tuning the optical and electrical properties of hydrothermally grown ZnO nanowires by sealed post annealing treatment. Solid State Communications, 2013, 160, 41-46.	0.9	12
72	Intracavity cold atomic ensemble with high optical depth. Review of Scientific Instruments, 2019, 90, 013105.	0.6	10

#	Article	IF	CITATIONS
73	Improving spatial resolution in quantum imaging beyond the Rayleigh diffraction limit using multiphoton W entangled states. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3908-3911.	0.9	9
74	Atomic-resonance-enhanced nonlinear optical frequency conversion with entangled photon pairs. Physical Review A, 2011, 83, .	1.0	9
75	Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons. Chinese Physics Letters, 2011, 28, 070307.	1.3	9
76	Estimating Atomic Sizes with Raman Spectroscopy. Scientific Reports, 2013, 3, 1486.	1.6	9
77	Manipulating photon emission efficiency with local electronic states in a tunneling gap. Optics Express, 2014, 22, 8234.	1.7	9
78	TEFM Enhances Transcription Elongation by Modifying mtRNAP Pausing Dynamics. Biophysical Journal, 2018, 115, 2295-2300.	0.2	9
79	Subwavelength transportation of light with atomic resonances. Physical Review A, 2015, 92, .	1.0	8
80	Frequency-induced phase-tunable polarization-entangled narrowband biphotons. Optica, 2015, 2, 505.	4.8	8
81	One-sided destructive quantum interference from an exceptional-point-based metasurface. Physical Review A, 2021, 104, .	1.0	8
82	Two-photon beating experiment using biphotons generated from a two-level system. Physical Review A, 2008, 78, .	1.0	7
83	Optical precursors with finite rise and fall time. Journal of Optics (United Kingdom), 2010, 12, 104010.	1.0	7
84	Mirrorless Optical Parametric Oscillation with Tunable Threshold in Cold Atoms. Physical Review Letters, 2017, 119, 150406.	2.9	7
85	Single photon at a configurable quantum-memory-based beam splitter. Physical Review A, 2018, 97, .	1.0	7
86	Three-wire magnetic trap for direct forced evaporative cooling. Physical Review A, 2009, 79, .	1.0	6
87	Narrowband photon pair generation and waveform reshaping. Frontiers of Physics, 2012, 7, 494-503.	2.4	6
88	Quantitative surface topography of martensitic microstructure by differential interference contrast microscopy. Journal of the Mechanics and Physics of Solids, 2019, 124, 102-114.	2.3	6
89	Dual beam-shear differential interference microscopy for full-field surface deformation gradient characterization. Journal of the Mechanics and Physics of Solids, 2020, 145, 104162.	2.3	6
90	Proposed narrowband biphoton generation from an ensemble of solid-state quantum emitters. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 646.	0.9	5

#	Article	IF	CITATIONS
91	Optical neural network quantum state tomography. Advanced Photonics, 2022, 4, .	6.2	5
92	An integrated single- and two-photon non-diffracting light-sheet microscope. Review of Scientific Instruments, 2018, 89, 043701.	0.6	4
93	Tailor-made unitary operations using dielectric metasurfaces. Optics Express, 2021, 29, 5677.	1.7	4
94	Hybrid Entanglement between Optical Discrete Polarizations and Continuous Quadrature Variables. Photonics, 2021, 8, 552.	0.9	4
95	Effective control of photoluminescence from ZnO nanowires by a-SiN_x:H decoration. Optics Letters, 2012, 37, 211.	1.7	3
96	Measuring optical beam shear angle of polarizing prisms beyond the diffraction limit with localization method. Optics Communications, 2019, 435, 227-231.	1.0	3
97	Two-photon free-induction decay with electromagnetically induced transparency. Optics Letters, 2010, 35, 1923.	1.7	2
98	Atomic magnetometer based on a double-dark-state system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3296-3299.	0.9	2
99	Optical Precursors. SpringerBriefs in Physics, 2013, , .	0.2	2
100	Efficient direct evaporative cooling in an atom-chip magnetic trap. Physical Review A, 2013, 87, .	1.0	2
101	FROZEN IODINE MOLECULES IN NANO-PORES OF ZEOLITE SINGLE CRYSTALS. Modern Physics Letters B, 2013, 27, 1330014.	1.0	2
102	High-storage efficiency EIT-based optical memory. , 2014, , .		2
103	Far-off-resonant ring trap near the ends of optical fibers. Physical Review A, 2007, 76, .	1.0	1
104	Frequency-bin entanglement with tunable phase. Journal of Optics (United Kingdom), 2015, 17, 105201.	1.0	1
105	Light sheets with extended length. Optics Communications, 2019, 450, 166-171.	1.0	1
106	Optical Precursors in Slow and Fast Light Media. , 2011, , .		0
107	Manipulating cold atoms with off-axis rotating traps. Journal of the Korean Physical Society, 2013, 63, 938-942.	0.3	Ο
108	Charge Transfer: Oxygen-Assisted Charge Transfer Between ZnO Quantum Dots and Graphene (Small) Tj ETQq(0 0 0 rgBT	/Overlock 10

#	Article	lF	CITATIONS
109	Generation of Subnatural Linewidth Biphotons. , 2007, , .		Ο
110	Four-Wave Mixing and Two-Photon Interference in a Three-Level Atomic Ensemble. , 2007, , .		0
111	A New Beating Experiment Using Biphotons Generated from a Two-Level System. , 2007, , .		0
112	Measurement of Biphoton Wavefunctions using Fast Amplitude Modulators. , 2008, , .		0
113	Modulation and Measurement of Time-Energy Entangled Photons. , 2009, , .		0
114	Shaping Paired Photons with Four-Wave Mixing and Slow Light. , 2009, , .		0
115	Narrowband Triphoton W State Generation via Four-Wave Mixings. , 2009, , .		0
116	Generation of Narrowband Hyperentangled Biphotons. , 2011, , .		0
117	Theory of Optical Precursors. SpringerBriefs in Physics, 2013, , 13-31.	0.2	0
118	Observation of Optical Precursors in Cold Atoms. SpringerBriefs in Physics, 2013, , 45-64.	0.2	0
119	Single-Photon Absorption and Reemission in Two-Level Cold Atoms. , 2013, , .		0
120	Optical Precursor of a Single Photon. SpringerBriefs in Physics, 2013, , 65-74.	0.2	0
121	Narrowband Biphotons: Generation, Manipulation, and Applications. Nano-optics and Nanophotonics, 2015, , 145-182.	0.2	0
122	Generation of frequency-bin entangled narrowband biphotons and their Bell test. , 2017, , .		0
123	Entangling Narrowband Photon Pairs. , 2017, , .		0
124	Enhanced spectral brightness of narrowband photon pair generation from a hot atomic vapor cell. , 2017, , .		0
125	Engineering Narrowband Biphotons. , 2018, , .		0
126	Configurable Beam Splitting of Single Photon in Cold Atoms. , 2019, , .		0

#	Article	IF	CITATIONS
127	Non-Hermitian Nonlinear Optics without Gain and Loss. , 2019, , .		Ο
128	Efficiently Loading Cold Atomic Ensemble into an Optical Cavity with High Optical Depth. , 2019, , .		0
129	Wavelength conversion for single-photon polarization qubits through continuous-variable quantum teleportation. Physical Review A, 2022, 105, .	1.0	0