Luis CerdÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5829087/publications.pdf

Version: 2024-02-01

57	1,262	20	35
papers	citations	h-index	g-index
58	58	58	1633
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reconstruction of Nuclear Ensemble Approach Electronic Spectra Using Probabilistic Machine Learning. Journal of Chemical Theory and Computation, 2022, 18, 3052-3064.	2.3	5
2	Quantitative comparison between different methods for the determination of the amplified spontaneous emission threshold in dye-polymer blends and perovskite thin films. Materials Today: Proceedings, 2022, , .	0.9	O
3	PhotO, a plausible primeval pigment on Earth and rocky exoplanets. Physical Chemistry Chemical Physics, 2022, 24, 16979-16987.	1.3	3
4	Amplified Spontaneous Emission Threshold Dependence on Determination Method in Dye-Doped Polymer and Lead Halide Perovskite Waveguides. Molecules, 2022, 27, 4261.	1.7	8
5	Unveiling photophysical and photonic phenomena by means of optical gain measurements in waveguides and solutions. Optics and Laser Technology, 2021, 136, 106766.	2.2	3
6	Taming the Photonic Behavior of Laser Dyes Through Specific and Dynamic Selfâ€Assembly onto Cellulose Nanocrystals. Advanced Photonics Research, 2021, 2, 2000107.	1.7	1
7	Ultrashort Pulse Generation in Nanolasers by Means of Lorenz–Haken Instabilities. Annalen Der Physik, 2021, 533, 2100122.	0.9	2
8	Simultaneous retrieval of optical gains, losses, and threshold in active waveguides. Optics and Laser Technology, 2020, 121, 105814.	2.2	7
9	Unveiling the role of upper excited electronic states in the photochemistry and laser performance of anti-B18H22. Journal of Materials Chemistry C, 2020, 8, 12806-12818.	2.7	16
10	A Series of Ultra-Efficient Blue Borane Fluorophores. Inorganic Chemistry, 2020, 59, 17058-17070.	1.9	13
11	Using the Variable Pump Intensity method to measure optical gains and unveil photophysical and photonic phenomena in active waveguides. EPJ Web of Conferences, 2020, 243, 11002.	0.1	0
12	Synthetic Approach to Readily Accessible Benzofuran-Fused Borondipyrromethenes as Red-Emitting Laser Dyes. Journal of Organic Chemistry, 2019, 84, 2523-2541.	1.7	31
13	BOPHYs versus BODIPYs: A comparison of their performance as effective multi-function organic dyes. Dyes and Pigments, 2019, 170, 107662.	2.0	21
14	Tailoring the Molecular Skeleton of Azaâ€BODIPYs to Design Photostable Redâ€Lightâ€Emitting Laser Dyes. ChemPhotoChem, 2019, 3, 63-63.	1.5	0
15	Tailoring the Molecular Skeleton of Azaâ€BODIPYs to Design Photostable Red‣ightâ€Emitting Laser Dyes. ChemPhotoChem, 2019, 3, 75-85.	1.5	11
16	Stereochemical and Steric Control of Photophysical and Chiroptical Properties in Bichromophoric Systems. Chemistry - A European Journal, 2018, 24, 3802-3815.	1.7	11
17	State-of-the-Art Active Materials for Organic Lasers. , 2018, , 85-149.		1
18	Interaction of <i>Anti</i> -B ₁₈ H ₂₂ with Light., 2018,, 115-136.		O

#	Article	IF	Citations
19	Thermochromic Fluorescence from B ₁₈ H ₂₀ (NC ₅ H ₅) ₂ : An Inorganic–Organic Composite Luminescent Compound with an Unusual Molecular Geometry. Advanced Optical Materials, 2017, 5, 1600694.	3.6	45
20	Chiral Organic Dyes Endowed with Circularly Polarized Laser Emission. Journal of Physical Chemistry C, 2017, 121, 5287-5292.	1.5	116
21	Multicolored Emission and Lasing in DCM-Adamantane Plasma Nanocomposite Optical Films. ACS Applied Materials & Empty (Interfaces, 2017, 9, 8948-8959.	4.0	12
22	<i>N</i> â€BODIPYs Come into Play: Smart Dyes for Photonic Materials. Chemistry - A European Journal, 2017, 23, 9383-9390.	1.7	30
23	Circularly polarized laser emission in optically active organic dye solutions. Physical Chemistry Chemical Physics, 2017, 19, 22088-22093.	1.3	37
24	Variable Stripe Length method: influence of stripe length choice on measured optical gain. Optics Letters, 2017, 42, 5258.	1.7	24
25	Circularly polarized laser emission induced in isotropic and achiral dye systems. Scientific Reports, 2016, 6, 28740.	1.6	18
26	Unprecedented Jâ€Aggregated Dyes in Pure Organic Solvents. Advanced Functional Materials, 2016, 26, 2756-2769.	7.8	52
27	Emission properties of dye-doped cationic nanoparticles: size, surfactant and monomeric composition effects. RSC Advances, 2015, 5, 4454-4462.	1.7	3
28	A borane laser. Nature Communications, 2015, 6, 5958.	5.8	63
29	Straightforward Synthetic Protocol for the Introduction of Stabilized Câ€Nucleophiles in the BODIPY Core for Advanced Sensing and Photonic Applications. Chemistry - A European Journal, 2015, 21, 1755-1764.	1.7	22
30	First Highly Efficient and Photostable <i>E</i> and <i>C</i> â€Derivatives of 4,4â€Difluoroâ€4â€boraâ€3a,4aâ€diazaâ€ <i>s</i> a€indacene (BODIPY) as Dye Lasers in the Liquid Phase, Thin F Solidâ€State Rods. Chemistry - A European Journal, 2014, 20, 2646-2653.	ilm ıs , and	62
31	A FRET analysis of dye diffusion in core/shell polymer nanoparticles. RSC Advances, 2014, 4, 22115.	1.7	7
32	Förster Resonance Energy Transfer and Laser Efficiency in Colloidal Suspensions of Dye-Doped Nanoparticles: Concentration Effects. Journal of Physical Chemistry C, 2014, 118, 13107-13117.	1.5	24
33	Focusing on charge-surface interfacial effects to enhance the laser properties of dye-doped nanoparticles. Laser Physics Letters, 2014, 11, 015901.	0.6	3
34	Carboxylates versus Fluorines: Boosting the Emission Properties of Commercial BODIPYs in Liquid and Solid Media. Advanced Functional Materials, 2013, 23, 4195-4205.	7.8	56
35	Solid state dye lasers with scattering feedback. Progress in Quantum Electronics, 2013, 37, 348-382.	3.5	13
36	Naturally Assembled Excimers in Xanthenes as Singular and Highly Efficient Laser Dyes in Liquid and Solid Media. Advanced Optical Materials, 2013, 1, 984-990.	3.6	15

#	Article	IF	Citations
37	Random Lasing in Selfâ€Assembled Dyeâ€Doped Latex Nanoparticles: Packing Density Effects. Advanced Functional Materials, 2013, 23, 3916-3924.	7.8	22
38	Singular laser behavior of hemicyanine dyes: unsurpassed efficiency and finely structured spectrum in the near-IR region. Laser Physics Letters, 2012, 9, 426-433.	0.6	20
39	Random lasing from sulforhodamine dye-doped polymer films with high surface roughness. Applied Physics B: Lasers and Optics, 2012, 108, 839-850.	1.1	40
40	Photophysical and Lasing Properties of Rh6G Confined Polymeric Nanoparticles Suspension. , 2012, , .		0
41	New perylene-doped polymeric thin films for efficient and long-lasting lasers. Journal of Materials Chemistry, 2012, 22, 8938.	6.7	48
42	FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles. Nature Photonics, 2012, 6, 621-626.	15.6	137
43	Waveguided random lasing in red-emitting-dye-doped organic–inorganic hybrid polymer thin films. Organic Electronics, 2012, 13, 1463-1469.	1.4	21
44	Waveguided Random Laser Emission in Dye-Doped Hybrid Polymer Thin Films. , 2012, , .		0
45	Non-resonant feedback to enhance conventional lasing in advanced materials. , 2011, , .		0
46	Variable Stripe Length method for optical gain measurements: Characteristic lengths. , 2011, , .		1
47	Efficiency and photostability optimization in Perylene-doped polymer distributed feedback lasers and amplifiers. , $2011, \ldots$		0
48	Laser Efficiency Enhancement Due to Non-Resonant Feedback in Dye-Doped Hybrid Materials: Theoretical Insights and Experiment. IEEE Journal of Quantum Electronics, 2011, 47, 907-919.	1.0	8
49	Laser emission from mirrorless waveguides based on photosensitized polymers incorporating POSS. Optics Express, 2010, 18, 10247.	1.7	38
50	On the characteristic lengths in the variable stripe length method for optical gain measurements. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 1874.	0.9	21
51	Dye-doped fluorinated polyimides as efficient long-lived wave-guide lasers and amplifiers. , 2009, , .		0
52	Dyeâ€Doped POSS Solutions: Random Nanomaterials for Laser Emission. Advanced Materials, 2009, 21, 4163-4166.	11.1	66
53	Highâ€Gain Longâ€Lived Amplified Spontaneous Emission from Dyeâ€Doped Fluorinated Polyimide Planar Waveguides. Macromolecular Chemistry and Physics, 2009, 210, 1624-1631.	1.1	11
54	Waveguides and quasi-waveguides based on pyrromethene 597-doped poly(methyl methacrylate). Applied Physics B: Lasers and Optics, 2009, 97, 73-83.	1.1	17

Luis CerdÃin

#	Article	IF	CITATIONS
55	A simple experiment on slow light in ruby. American Journal of Physics, 2008, 76, 826-832.	0.3	9
56	Amplified spontaneous emission and optical gain measurements from pyrromethene 567 �?? doped polymer waveguides and quasi-waveguides. Optics Express, 2008, 16, 7023.	1.7	59
57	Amplified spontaneous emission and optical gain measurements from pyrromethene 567 $iz\frac{1}{2}$?? doped polymer waveguides and quasi-waveguides: erratum. Optics Express, 2008, 16, 7587.	1.7	9