## Kevin J Frankowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5828797/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Development of Functionally Selective, Small Molecule Agonists at Kappa Opioid Receptors. Journal of<br>Biological Chemistry, 2013, 288, 36703-36716.                                                                                                  | 3.4  | 123       |
| 2  | Syntheses of the <i>Stemona</i> Alkaloids (±)-Stenine, (±)-Neostenine, and (±)-13-Epineostenine Using a<br>Stereodivergent Diels–Alder/Azido-Schmidt Reaction. Journal of the American Chemical Society, 2008,<br>130, 6018-6024.                      | 13.7 | 103       |
| 3  | Practical Electrochemical Anodic Oxidation of Polycyclic Lactams for Late Stage Functionalization.<br>Angewandte Chemie - International Edition, 2015, 54, 10555-10558.                                                                                | 13.8 | 74        |
| 4  | Metarrestin, a perinucleolar compartment inhibitor, effectively suppresses metastasis. Science<br>Translational Medicine, 2018, 10, .                                                                                                                  | 12.4 | 55        |
| 5  | Structure–Activity Relationship Studies of Functionally Selective Kappa Opioid Receptor Agonists that<br>Modulate ERK 1/2 Phosphorylation While Preserving G Protein Over βArrestin2 Signaling Bias. ACS<br>Chemical Neuroscience, 2015, 6, 1411-1419. | 3.5  | 48        |
| 6  | Benzothiazole and Pyrrolone Flavivirus Inhibitors Targeting the Viral Helicase. ACS Infectious Diseases, 2015, 1, 140-148.                                                                                                                             | 3.8  | 44        |
| 7  | Discovery of Small Molecule Kappa Opioid Receptor Agonist and Antagonist Chemotypes through a<br>HTS and Hit Refinement Strategy. ACS Chemical Neuroscience, 2012, 3, 221-236.                                                                         | 3.5  | 42        |
| 8  | Investigation of the role of βarrestin2 in kappa opioid receptor modulation in a mouse model of pruritus. Neuropharmacology, 2015, 99, 600-609.                                                                                                        | 4.1  | 38        |
| 9  | Identification of Positive Allosteric Modulators of the D <sub>1</sub> Dopamine Receptor That Act at Diverse Binding Sites. Molecular Pharmacology, 2018, 94, 1197-1209.                                                                               | 2.3  | 35        |
| 10 | Synthesis and receptor profiling of <i>Stemona</i> alkaloid analogues reveal a potent class of sigma<br>ligands. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108,<br>6727-6732.                             | 7.1  | 30        |
| 11 | Characterization of kappa opioid receptor mediated, dynorphin-stimulated [35S]GTPÎ <sup>3</sup> S binding in mouse<br>striatum for the evaluation of selective KOR ligands in an endogenous setting. Neuropharmacology,<br>2015, 99, 131-141.          | 4.1  | 24        |
| 12 | <i>N</i> -Alkyl-octahydroisoquinolin-1-one-8-carboxamides: Selective and Nonbasic κ-Opioid Receptor<br>Ligands. ACS Medicinal Chemistry Letters, 2010, 1, 189-193.                                                                                     | 2.8  | 22        |
| 13 | Explorations of Stemona Alkaloid-Inspired Analogues: Skeletal Modification and Functional Group<br>Diversification. ACS Combinatorial Science, 2008, 10, 721-725.                                                                                      | 3.3  | 20        |
| 14 | Discovery, Optimization, and Characterization of ML417: A Novel and Highly Selective D <sub>3</sub><br>Dopamine Receptor Agonist. Journal of Medicinal Chemistry, 2020, 63, 5526-5567.                                                                 | 6.4  | 15        |
| 15 | Structure-Activity Investigation of a G Protein-Biased Agonist Reveals Molecular Determinants for<br>Biased Signaling of the D2 Dopamine Receptor. Frontiers in Synaptic Neuroscience, 2018, 10, 2.                                                    | 2.5  | 14        |
| 16 | Evaluating p97 Inhibitor Analogues for Potency against p97–p37 and p97–Npl4–Ufd1 Complexes.<br>ChemMedChem, 2016, 11, 953-957.                                                                                                                         | 3.2  | 13        |
| 17 | Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids.<br>Autophagy, 2016, 12, 1460-1471.                                                                                                                      | 9.1  | 12        |
| 18 | Development of an Aryloxazole Class of Hepatitis C Virus Inhibitors Targeting the Entry Stage of the Viral Replication Cycle, Journal of Medicinal Chemistry, 2017, 60, 6364-6383                                                                      | 6.4  | 12        |

Kevin J Frankowski

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Simultaneously Targeting the NS3 Protease and Helicase Activities for More Effective Hepatitis C Virus<br>Therapy. ACS Chemical Biology, 2015, 10, 1887-1896.                                                                                         | 3.4  | 10        |
| 20 | Fluoxazolevir inhibits hepatitis C virus infection in humanized chimeric mice by blocking viral membrane fusion. Nature Microbiology, 2020, 5, 1532-1541.                                                                                             | 13.3 | 10        |
| 21 | Pharmacokinetic evaluation of the PNC disassembler metarrestin in wild-type and<br>Pdx1-Cre;LSL-KrasG12D/+;Tp53R172H/+ (KPC) mice, a genetically engineered model of pancreatic cancer.<br>Cancer Chemotherapy and Pharmacology, 2018, 82, 1067-1080. | 2.3  | 9         |
| 22 | Potency enhancement of the κ-opioid receptor antagonist probe ML140 through sulfonamide constraint utilizing a tetrahydroisoquinoline motif. Bioorganic and Medicinal Chemistry, 2015, 23, 3948-3956.                                                 | 3.0  | 7         |
| 23 | Development of pyrimidone D1 dopamine receptor positive allosteric modulators. Bioorganic and<br>Medicinal Chemistry Letters, 2021, 31, 127696.                                                                                                       | 2.2  | 6         |
| 24 | Decahydrobenzoquinolin-5-one sigma receptor ligands: Divergent development of both sigma 1 and sigma 2 receptor selective examples. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5689-5694.                                                  | 2.2  | 5         |
| 25 | Discovery and Optimization of Pyrrolopyrimidine Derivatives as Selective Disruptors of the<br>Perinucleolar Compartment, a Marker of Tumor Progression toward Metastasis. Journal of Medicinal<br>Chemistry, 2022, 65, 8303-8331.                     | 6.4  | 4         |
| 26 | Divergent Electrochemical Carboamidation of Cyclic Amines. Journal of Organic Chemistry, 2022, 87,<br>1173-1193.                                                                                                                                      | 3.2  | 3         |
| 27 | Small-Molecule Disruptors of Mutant Huntingtin–Calmodulin Protein–Protein Interaction Attenuate<br>Deleterious Effects of Mutant Huntingtin. ACS Chemical Neuroscience, 0, , .                                                                        | 3.5  | 3         |
| 28 | Discovery of sultam-containing small-molecule disruptors of the huntingtin–calmodulin<br>protein–protein interaction. Medicinal Chemistry Research, 2020, 29, 1187-1198.                                                                              | 2.4  | 2         |
| 29 | Development of biased agonists at the kappa opioid receptor FASEB Journal, 2013, 27, .                                                                                                                                                                | 0.5  | 2         |
| 30 | Advances in Sulfonamide Kappa Opioid Receptor Antagonists: Structural Refinement and Evaluation of CNS Clearance. ACS Chemical Neuroscience, 2022, 13, 1315-1332.                                                                                     | 3.5  | 1         |
| 31 | Structure–activity relationship investigation of triazole-based kappa opioid receptor agonists.<br>Medicinal Chemistry Research, 2021, 30, 1386-1396.                                                                                                 | 2.4  | 0         |
| 32 | Development of functionally selective agonists at the kappa opioid receptor (KOR). FASEB Journal, 2013, 27, lb551.                                                                                                                                    | 0.5  | 0         |
| 33 | Mutant Huntingtinâ€Calmodulin Interaction: Potential Therapeutic Target for Huntington's Disease.<br>FASEB Journal, 2019, 33, 501.16.                                                                                                                 | 0.5  | 0         |
| 34 | Identification of a Novel Negative Allosteric Modulator of the D3 Dopamine Receptor. FASEB Journal, 2019, 33, 503.3.                                                                                                                                  | 0.5  | 0         |
| 35 | Structure–Activity Relationships of a Negative Allosteric Modulator of the D3 Dopamine Receptor and<br>Investigation of its Binding Site. FASEB Journal, 2022, 36, .                                                                                  | 0.5  | 0         |