Riccardo Di Corato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5828787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. ACS Nano, 2016, 10, 2436-2446.	7.3	651
2	Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment. ACS Nano, 2012, 6, 3080-3091.	7.3	638
3	From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacological Research, 2010, 62, 126-143.	3.1	417
4	Magnetic hyperthermia efficiency in the cellular environment forÂdifferent nanoparticle designs. Biomaterials, 2014, 35, 6400-6411.	5.7	341
5	Combining Magnetic Hyperthermia and Photodynamic Therapy for Tumor Ablation with Photoresponsive Magnetic Liposomes. ACS Nano, 2015, 9, 2904-2916.	7.3	284
6	Heat-Generating Iron Oxide Nanocubes: Subtle "Destructurators―of the Tumoral Microenvironment. ACS Nano, 2014, 8, 4268-4283.	7.3	200
7	Magnetic (Hyper)Thermia or Photothermia? Progressive Comparison of Iron Oxide and Cold Nanoparticles Heating in Water, in Cells, and In Vivo. Advanced Functional Materials, 2018, 28, 1803660.	7.8	187
8	One-Pot Synthesis and Characterization of Size-Controlled Bimagnetic FePtâ^`Iron Oxide Heterodimer Nanocrystals. Journal of the American Chemical Society, 2008, 130, 1477-1487.	6.6	179
9	Ultra Magnetic Liposomes for MR Imaging, Targeting, and Hyperthermia. Langmuir, 2012, 28, 11834-11842.	1.6	177
10	Multifunctional Nanobeads Based on Quantum Dots and Magnetic Nanoparticles: Synthesis and Cancer Cell Targeting and Sorting. ACS Nano, 2011, 5, 1109-1121.	7.3	166
11	Water solubilization of hydrophobic nanocrystals by means of poly(maleic) Tj ETQq1 1 0.784314 rgBT /Overlock	10 Tf 50 2	342 Td (anhy 133
12	Water-Repellent Cellulose Fiber Networks with Multifunctional Properties. ACS Applied Materials & Interfaces, 2011, 3, 4024-4031.	4.0	103
13	Multifunctional Nanostructures Based on Inorganic Nanoparticles and Oligothiophenes and Their Exploitation for Cellular Studies. Journal of the American Chemical Society, 2008, 130, 10545-10555.	6.6	98
14	Fluorescent-Magnetic Hybrid Nanostructures: Preparation, Properties, and Applications in Biology. IEEE Transactions on Nanobioscience, 2007, 6, 298-308.	2.2	96
15	High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs. ACS Nano, 2013, 7, 7500-7512.	7.3	88
16	Magnetic nanobeads decorated by thermo-responsive PNIPAM shell as medical platforms for the efficient delivery of doxorubicin to tumour cells. Nanoscale, 2011, 3, 619-629.	2.8	84
17	Cell-derived vesicles as a bioplatform for the encapsulation of theranostic nanomaterials. Nanoscale, 2013, 5, 11374.	2.8	84
18	Magnetic–Fluorescent Colloidal Nanobeads: Preparation and Exploitation in Cell Separation Experiments. Macromolecular Bioscience, 2009, 9, 952-958.	2.1	66

RICCARDO DI CORATO

#	Article	IF	CITATIONS
19	Magnetic Nanobeads Decorated with Silver Nanoparticles as Cytotoxic Agents and Photothermal Probes. Small, 2012, 8, 2731-2742.	5.2	58
20	Mesoscale Assemblies of Iron Oxide Nanocubes as Heat Mediators and Image Contrast Agents. Langmuir, 2015, 31, 808-816.	1.6	57
21	Acidic pH-Responsive Nanogels as Smart Cargo Systems for the Simultaneous Loading and Release of Short Oligonucleotides and Magnetic Nanoparticles. Langmuir, 2010, 26, 10315-10324.	1.6	54
22	Design and Application of Cisplatin-Loaded Magnetic Nanoparticle Clusters for Smart Chemotherapy. ACS Applied Materials & Interfaces, 2019, 11, 1864-1875.	4.0	49
23	Magnetic Nanocarriers with Tunable pH Dependence for Controlled Loading and Release of Cationic and Anionic Payloads. Advanced Materials, 2011, 23, 5645-5650.	11.1	46
24	Multiple functionalization of fluorescent nanoparticles for specific biolabeling and drug delivery of dopamine. Nanoscale, 2011, 3, 5110.	2.8	39
25	Superparamagnetic cellulose fiber networks via nanocomposite functionalization. Journal of Materials Chemistry, 2012, 22, 1662-1666.	6.7	39
26	Magnetophoresis at the nanoscale: tracking the magnetic targeting efficiency of nanovectors. Nanomedicine, 2012, 7, 1713-1727.	1.7	35
27	Hybrid polymeric-protein nano-carriers (HPPNC) for targeted delivery of TGFβ inhibitors to hepatocellular carcinoma cells. Journal of Materials Science: Materials in Medicine, 2017, 28, 120.	1.7	26
28	Luminescent Silica-Based Nanostructures from in Vivo Iridium-Doped Diatoms Microalgae. ACS Sustainable Chemistry and Engineering, 2019, 7, 2207-2215.	3.2	23
29	Nanoheterostructures (NHS) and Their Applications in Nanomedicine: Focusing on In Vivo Studies. Materials, 2019, 12, 139.	1.3	19
30	Maghemite Nanoparticles with Enhanced Magnetic Properties: One-Pot Preparation and Ultrastable Dextran Shell. ACS Applied Materials & Interfaces, 2018, 10, 20271-20280.	4.0	18
31	Low-defectiveness exfoliation of MoS2 nanoparticles and their embedment in hybrid light-emitting polymer nanofibers. Nanoscale, 2018, 10, 21748-21754.	2.8	16
32	Application in Nanomedicine of Manganese-Zinc Ferrite Nanoparticles. Applied Sciences (Switzerland), 2021, 11, 11183.	1.3	15
33	Rod-shaped nanostructures based on superparamagnetic nanocrystals as viscosity sensors in liquid. Journal of Applied Physics, 2011, 110, .	1.1	13
34	Forced―and Selfâ€Rotation of Magnetic Nanorods Assembly at the Cell Membrane: A Biomagnetic Torsion Pendulum. Small, 2017, 13, 1701274.	5.2	13
35	Single electron tunneling in large scale nanojunction arrays with bisferrocene–nanoparticle hybrids. Nanoscale, 2012, 4, 2311.	2.8	6
36	Immune Profiling of Polysaccharide Submicron Vesicles. Biomacromolecules, 2018, 19, 3560-3571.	2.6	6

#	Article	IF	CITATIONS
37	Conformable Nanowire-in-Nanofiber Hybrids for Low-Threshold Optical Gain in the Ultraviolet. ACS Nano, 2020, 14, 8093-8102.	7.3	6
38	Tailoring of silica-based nanoporous pod by spermidine multi-activity. Scientific Reports, 2020, 10, 21142.	1.6	5
39	Microfluidics and BIO-encapsulation for drug- and cell-therapy. , 2017, , .		2
40	In Vitro Cytotoxicity of Halloysite Clay Nanotubes is Effectively Prevented by Surface Coating with PEG. , 2016, , .		1
41	Flexible organic-inorganic nanofibers for UV light emission and lasing. , 2021, , .		0