List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5828449/publications.pdf Version: 2024-02-01

ΗΙΡΟΚΙ ΗΛΒΑΖΛΚΙ

#	Article	IF	CITATIONS
1	A flow model of porous anodic film growth on aluminium. Electrochimica Acta, 2006, 52, 681-687.	5.2	355
2	Crystallization of anodic titania on titanium and its alloys. Corrosion Science, 2003, 45, 2063-2073.	6.6	222
3	Effects of Alloying Elements in Anodizing of Aluminium. Transactions of the Institute of Metal Finishing, 1997, 75, 18-23.	1.3	193
4	Fast migration of fluoride ions in growing anodic titanium oxide. Electrochemistry Communications, 2007, 9, 1222-1227.	4.7	160
5	Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte. Corrosion Science, 2007, 49, 672-693.	6.6	152
6	The role of corrosion-resistant alloying elements in passivity. Corrosion Science, 2007, 49, 42-52.	6.6	137
7	Tracer Investigation of Pore Formation in Anodic Titania. Journal of the Electrochemical Society, 2008, 155, C487.	2.9	129
8	Film formation and detachment during anodizing of Al–Mg alloys. Corrosion Science, 1999, 41, 1599-1613.	6.6	126
9	Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni–Zr alloys. Catalysis Communications, 2006, 7, 24-28.	3.3	124
10	Copper enrichment in Al-Cu alloys due to electropolishing and anodic oxidation. Thin Solid Films, 1997, 293, 327-332.	1.8	118
11	Co-methanation of carbon monoxide and carbon dioxide on supported nickel and cobalt catalysts prepared from amorphous alloys. Applied Catalysis A: General, 1998, 172, 131-140.	4.3	115
12	Starch-Derived Hierarchical Porous Carbon with Controlled Porosity for High Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 7292-7303.	6.7	115
13	Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation. Applied Surface Science, 2016, 388, 653-663.	6.1	114
14	Characterization of electrodeposited WO3 films and its application to electrochemical wastewater treatment. Electrochimica Acta, 2002, 47, 4181-4188.	5.2	112
15	Initial stages of plasma electrolytic oxidation of titanium. Corrosion Science, 2003, 45, 2757-2768.	6.6	111
16	Cotton-derived carbon sponge as support for form-stabilized composite phase change materials with enhanced thermal conductivity. Solar Energy Materials and Solar Cells, 2019, 192, 8-15.	6.2	106
17	Oxidation behavior of Mo5SiB2-based alloy at elevated temperatures. Intermetallics, 2002, 10, 407-414.	3.9	105
18	Barrier-type anodic film formation on an Al-3.5 wt% Cu alloy. Corrosion Science, 1996, 38, 59-72.	6.6	103

#	Article	IF	CITATIONS
19	lonic transport in amorphous anodic titania stabilised by incorporation of silicon species. Corrosion Science, 2002, 44, 1047-1055.	6.6	103
20	Global CO2 recycling—novel materials and prospect for prevention of global warming and abundant energy supply. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 267, 200-206.	5.6	99
21	The importance of surface treatment to the anodic oxidation behaviour of Alî—,Cu alloys. Corrosion Science, 1996, 38, 1033-1042.	6.6	97
22	Anodically deposited manganese oxide and manganese–tungsten oxide electrodes for oxygen evolution from seawater. Electrochimica Acta, 1998, 43, 3303-3312.	5.2	96
23	Mechanical properties of amorphous anodic alumina and tantala films using nanoindentation. Nanotechnology, 2002, 13, 451-455.	2.6	93
24	Nanoscale enrichments of substrate elements in the growth of thin oxide films. Corrosion Science, 1997, 39, 731-737.	6.6	91
25	Gel formation and the efficiency of anodic film growth on aluminium. Electrochimica Acta, 1999, 44, 2423-2435.	5.2	91
26	Formation and characterization of wear-resistant PEO coatings formed on β-titanium alloy at different electrolyte temperatures. Applied Surface Science, 2012, 259, 711-718.	6.1	91
27	The surface characterization of titanium and titanium-nickel alloys in sulfuric acid. Corrosion Science, 1993, 35, 43-49.	6.6	88
28	Vertically aligned carbon fibers as supporting scaffolds for phase change composites with anisotropic thermal conductivity and good shape stability. Journal of Materials Chemistry A, 2019, 7, 4934-4940.	10.3	86
29	Anodizing of aluminium alloys. Aircraft Engineering and Aerospace Technology, 1999, 71, 228-238.	0.8	85
30	Cathodic pulse breakdown of anodic films on aluminium in alkaline silicate electrolyte – Understanding the role of cathodic half-cycle in AC plasma electrolytic oxidation. Corrosion Science, 2012, 55, 90-96.	6.6	85
31	The corrosion behavior of amorphous Fe-Cr-Mo-P-C and Fe-Cr-W-P-C alloys in 6 M HCl solution. Corrosion Science, 1992, 33, 225-236.	6.6	83
32	Evidence of oxygen bubbles formed within anodic films on aluminium-copper alloys. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1997, 76, 729-741.	0.6	79
33	The anodic behavior of amorphous Ni-19P alloys in different amorphous states. Corrosion Science, 1989, 29, 1319-1328.	6.6	78
34	Nitrogen-doped porous carbon as-mediated by a facile solution combustion synthesis for supercapacitor and oxygen reduction electrocatalyst. Chemical Engineering Journal, 2018, 350, 278-289.	12.7	78
35	Influences of structure and composition on growth of anodic oxide films on Tiî—,Zr alloys. Electrochimica Acta, 2003, 48, 3257-3266.	5.2	76
36	Fabrication of Super-Oil-Repellent Dual Pillar Surfaces with Optimized Pillar Intervals. Langmuir, 2011, 27, 11752-11756.	3.5	76

#	Article	IF	CITATIONS
37	Honeycomb carbon fibers strengthened composite phase change materials for superior thermal energy storage. Applied Thermal Engineering, 2020, 164, 114493.	6.0	75
38	Mobility of copper ions in anodic alumina films. Electrochimica Acta, 1997, 42, 2627-2635.	5.2	74
39	Title is missing!. Journal of Applied Electrochemistry, 1999, 29, 769-775.	2.9	74
40	Highly corrosion-resistant Ni-based bulk amorphous alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 753-757.	5.6	74
41	Radiofrequency GDOES: a powerful technique for depth profiling analysis of thin films. Surface and Interface Analysis, 2003, 35, 564-574.	1.8	73
42	High rate capability of carbon nanofilaments with platelet structure as anode materials for lithium ion batteries. Electrochemistry Communications, 2006, 8, 1275-1279.	4.7	72
43	Stress generated porosity in anodic alumina formed in sulphuric acid electrolyte. Corrosion Science, 2007, 49, 3772-3782.	6.6	71
44	CO2 methanation of Ni catalysts supported on tetragonal ZrO2 doped with Ca2+ and Ni2+ ions. International Journal of Hydrogen Energy, 2015, 40, 8347-8355.	7.1	71
45	Formation of amorphous anodic oxide films of controlled composition on aluminium alloys. Thin Solid Films, 1997, 300, 131-137.	1.8	69
46	Formation of Anodic Films on Magnesium Alloys in an Alkaline Phosphate Electrolyte. Journal of the Electrochemical Society, 2002, 149, B4.	2.9	69
47	Formation–structure–properties of niobium-oxide nanocolumn arrays via self-organized anodization of sputter-deposited aluminum-on-niobium layers. Journal of Materials Chemistry C, 2014, 2, 4847.	5.5	69
48	Passivity and its breakdown on sputter-deposited amorphous Al-early transition metal alloys in 1 M HCl at 30°C. Corrosion Science, 1990, 31, 349-354.	6.6	68
49	Oxidation of copper and mobility of copper ions during anodizing of an Al—1.5 wt.% Cu alloy. Surface and Interface Analysis, 1995, 23, 892-898.	1.8	68
50	The incorporation of metal ions into anodic films on aluminium alloys. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1996, 73, 445-460.	0.6	68
51	Experimental evidence for the critical size of heterogeneity areas for pitting corrosion of Cr-Zr alloys in 6 M HCl. Corrosion Science, 1998, 40, 1-17.	6.6	68
52	Characterization of sputter-deposited Ni-Mo and Ni-W alloy electrocatalysts for hydrogen evolution in alkaline solution. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 905-909.	5.6	67
53	Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc–air batteries: Effects of the crystalline structure of manganese oxides. Journal of Power Sources, 2015, 298, 102-113.	7.8	66
54	Oxygen evolution on manganese–molybdenum oxide anodes in seawater electrolysis. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 267, 254-259.	5.6	65

#	Article	IF	CITATIONS
55	The durability of manganese–molybdenum oxide anodes for oxygen evolution in seawater electrolysis. Electrochimica Acta, 2000, 45, 2297-2303.	5.2	65
56	Two-step plasma electrolytic oxidation of Ti–15V–3Al–3Cr–3Sn for wear-resistant and adhesive coating. Surface and Coatings Technology, 2011, 205, 4732-4740.	4.8	64
57	Corrosion and passivation behavior of Mg–Zn–Y–Al alloys prepared by cooling rate-controlled solidification. Applied Surface Science, 2011, 257, 8258-8267.	6.1	64
58	Mixed proton–electron–oxide ion triple conducting manganite as an efficient cobalt-free cathode for protonic ceramic fuel cells. Journal of Materials Chemistry A, 2020, 8, 11043-11055.	10.3	64
59	Impurity distributions in barrier anodic films on aluminium: a GDOES depth profiling study. Electrochimica Acta, 1999, 44, 2297-2306.	5.2	62
60	A Tracer Study of Oxide Growth during Spark Anodizing of Aluminum. Journal of the Electrochemical Society, 2005, 152, C382.	2.9	62
61	Galvanostatic Growth of Nanoporous Anodic Films on Iron in Ammonium Fluorideâ^ Ethylene Glycol Electrolytes with Different Water Contents. Journal of Physical Chemistry C, 2010, 114, 18853-18859.	3.1	62
62	Compositional dependence of the CO2 methanation activity of Ni/ZrO2 catalysts prepared from amorphous NiZr alloy precursors. Applied Catalysis A: General, 1997, 163, 187-197.	4.3	61
63	Rf-GDOES depth profiling analysis of a monolayer of thiourea adsorbed on copper. Journal of Analytical Atomic Spectrometry, 2004, 19, 692.	3.0	61
64	A tracer investigation of chromic acid anodizing of aluminium. Surface and Interface Analysis, 2007, 39, 860-864.	1.8	61
65	A critical assessment of the Mott-Schottky analysis for the characterisation of passive film-electrolyte junctions. Russian Journal of Electrochemistry, 2010, 46, 1306-1322.	0.9	61
66	An XPS study of the corrosion behavior of sputter-deposited amorphous Al-W alloys in 1 M HCl. Corrosion Science, 1991, 32, 313-325.	6.6	59
67	Spark anodizing of β-Ti alloy for wear-resistant coating. Surface and Coatings Technology, 2007, 201, 8730-8737.	4.8	59
68	Recent progress in corrosion-resistant metastable alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 198, 1-10.	5.6	57
69	CO2 methanation catalysts prepared from amorphous Ni–Zr–Sm and Ni–Zr–misch metal alloy precursors. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 267, 220-226.	5.6	57
70	Residual flaws due to formation of oxygen bubbles in anodic alumina. Corrosion Science, 1999, 41, 1945-1954.	6.6	57
71	Anodic polarization behaviour of sputter-deposited Alî—,Zr alloys in a neutral chloride-containing buffer solution. Electrochimica Acta, 1991, 36, 1227-1233.	5.2	55
72	The corrosion behavior of sputter-deposited amorphous titanium-chromium alloys in 1 M and 6 M HCl solutions. Corrosion Science, 1993, 34, 975-987.	6.6	55

#	Article	IF	CITATIONS
73	Materials for global carbon dioxide recycling. Corrosion Science, 2002, 44, 371-386.	6.6	55
74	Morphological Development of Oxygen Bubbles in Anodic Alumina. Journal of the Electrochemical Society, 2000, 147, 1747.	2.9	54
75	Advanced materials for global carbon dioxide recycling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 88-96.	5.6	54
76	Tracer study of pore initiation in anodic alumina formed in phosphoric acid. Electrochimica Acta, 2013, 113, 302-312.	5.2	54
77	The corrosion behavior of sputter-deposited amorphous chromium-zirconium alloys in 6 M HCl solution. Corrosion Science, 1993, 34, 1817-1827.	6.6	53
78	The role of chromium and molybdenum in passivation of amorphous Fe-Cr-Mo-P-C alloys in deaerated 1 M HCl. Corrosion Science, 1996, 38, 2137-2151.	6.6	53
79	The passivation behavior of sputter-deposited W-Ta alloys in 12 M HCl. Corrosion Science, 1998, 40, 757-779.	6.6	53
80	Glow discharge optical emission spectrometry (GDOES) depth profiling analysis of anodic alumina films—a depth resolution study. Surface and Interface Analysis, 1999, 27, 24-28.	1.8	53
81	Influence of grain orientation on oxygen generation in anodic titania. Thin Solid Films, 2008, 516, 2296-2305.	1.8	53
82	Anodic film formation on a sputter-deposited Al-30at%Mo alloy. Corrosion Science, 1995, 37, 1497-1509.	6.6	52
83	A photoelectrochemical and ESCA study of passivity of amorphous nickel-valve metal alloys. Corrosion Science, 1990, 31, 727-732.	6.6	51
84	The corrosion behavior of sputter-deposited Mo-Ti alloys in concentrated hydrochloric acid. Corrosion Science, 1996, 38, 1649-1667.	6.6	51
85	The Composition of the Alloy/Film Interface during Anodic Oxidation of Alâ€W Alloys. Journal of the Electrochemical Society, 1996, 143, 2465-2470.	2.9	51
86	Electrodeposited Ni-Fe-C Cathodes for Hydrogen Evolution. Journal of the Electrochemical Society, 2000, 147, 3003.	2.9	51
87	Volume Expansion Factor and Growth Efficiency of Anodic Alumina Formed in Sulphuric Acid. Journal of the Electrochemical Society, 2011, 158, C202-C214.	2.9	51
88	Heteroatom-doped porous carbon with tunable pore structure and high specific surface area for high performance supercapacitors. Electrochimica Acta, 2019, 314, 173-187.	5.2	51
89	Ionic Mobilities in Amorphous Anodic Titania. Journal of the Electrochemical Society, 2002, 149, B70.	2.9	50
90	Anodic dissolution of titanium in NaCl-containing ethylene glycol. Electrochimica Acta, 2008, 53, 3371-3376.	5.2	50

#	Article	IF	CITATIONS
91	Brownmilleriteâ€ŧype Ca ₂ FeCoO ₅ as a Practicable Oxygen Evolution Reaction Catalyst. ChemSusChem, 2017, 10, 2864-2868.	6.8	50
92	Migration of sulphate ions in anodic alumina. Electrochimica Acta, 2000, 45, 1805-1809.	5.2	49
93	Formation of self-organized nanoporous anodic films on Type 304 stainless steel. Electrochemistry Communications, 2012, 21, 1-4.	4.7	49
94	Anodic oxidation of Mg–Cu and Mg–Zn alloys. Electrochimica Acta, 2004, 49, 899-904.	5.2	48
95	Inter–relationships between ionic transport and composition in amorphous anodic oxides. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1997, 453, 1593-1609.	2.1	47
96	Compositional Evidence for Flow in Anodic Films on Aluminum under High Electric Fields. Journal of the Electrochemical Society, 2007, 154, C540.	2.9	47
97	The corrosion behavior of sputter-deposited amorphous copper-tantalum alloys in 12 M HCl. Corrosion Science, 1992, 33, 1507-1518.	6.6	46
98	The corrosion behavior of sputter-deposited amorphous Crî—,Nb and Crî—,Ta alloys in 12 M HCl solution. Corrosion Science, 1993, 34, 1947-1955.	6.6	46
99	Anodic film growth on an Al–21at.%Mg alloy. Corrosion Science, 2002, 44, 1133-1142.	6.6	46
100	Depassivation–repassivation behavior of type-312L stainless steel in NaCl solution investigated by the micro-indentation. Corrosion Science, 2009, 51, 1545-1553.	6.6	46
101	Facile preparation of self-healing superhydrophobic CeO2 surface by electrochemical processes. Applied Surface Science, 2017, 423, 968-976.	6.1	46
102	Enrichment-dependent anodic oxidation of Zinc in Al-Zn Alloys. Corrosion Science, 1996, 38, 1563-1577.	6.6	45
103	Enrichment factors for copper in aluminium alloys following chemical and electrochemical surface treatments. Corrosion Science, 2003, 45, 1539-1544.	6.6	45
104	Passivity and its breakdown on sputter-deposited amorphous Alî—,Ti alloys in a neutral aqueous solution with Clâ^'. Corrosion Science, 1990, 31, 401-406.	6.6	43
105	The corrosion behavior of sputter-deposited amorphous Mo-Zr alloys in 12 M HCl. Corrosion Science, 1995, 37, 307-320.	6.6	43
106	Preparation of corrosion-resistant amorphous Ni–Cr–P–B bulk alloys containing molybdenum and tantalum. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 696-700.	5.6	43
107	Grain orientation effects on copper enrichment and oxygen generation during anodizing of an Al–1at.%Cu alloy. Corrosion Science, 2003, 45, 789-797.	6.6	43
108	Inter-relationship between structure and dielectric properties of crystalline anodic zirconia. Thin Solid Films, 2005, 479, 144-151.	1.8	43

#	Article	IF	CITATIONS
109	Nanoporous Anodic Niobium Oxide Formed in Phosphate/Glycerol Electrolyte. Electrochemical and Solid-State Letters, 2005, 8, B17-B20.	2.2	43
110	Preparation of self-organized porous anodic niobium oxide microcones and their surface wettability. Acta Materialia, 2009, 57, 3941-3946.	7.9	43
111	Anodic film growth on tantalum in dilute phosphoric acid solution at 20 and 85°C. Electrochimica Acta, 2002, 47, 2761-2767.	5.2	42
112	Importance of water content in formation of porous anodic niobium oxide films in hot phosphate–glycerol electrolyte. Electrochimica Acta, 2009, 54, 946-951.	5.2	42
113	An XPS study of passive films on corrosion-resistant Crî—,Zr alloys prepared by sputter deposition. Corrosion Science, 1997, 39, 1365-1380.	6.6	41
114	Oxygen evolution within barrier oxide films. Corrosion Science, 2002, 44, 2153-2159.	6.6	41
115	Corrosion-resistant amorphous surface alloys. Corrosion Science, 1993, 35, 363-370.	6.6	40
116	Cross-section corrosion-potential profiles of aluminum-alloy brazing sheets observed by the flowing electrolyte scanning-droplet-cell technique. Electrochimica Acta, 2008, 53, 2529-2537.	5.2	40
117	Spark anodizing behaviour of titanium and its alloys in alkaline aluminate electrolyte. Corrosion Science, 2009, 51, 1534-1539.	6.6	40
118	Hydrogen separation by nanocrystalline titanium nitride membranes with high hydride ion conductivity. Nature Energy, 2017, 2, 786-794.	39.5	40
119	Formation of manganese-rich layers during anodizing of Al–Mn alloys. Corrosion Science, 1999, 41, 2053-2069.	6.6	39
120	Formation of barrier-type amorphous anodic films on Ti–Mo alloys. Surface and Coatings Technology, 2003, 169-170, 151-154.	4.8	39
121	Effects of current density and electrolyte temperature on the volume expansion factor of anodic alumina formed in oxalic acid. Electrochimica Acta, 2012, 59, 186-195.	5.2	39
122	Nanostructured anodic-alumina-based dielectrics for high-frequency integral capacitors. Thin Solid Films, 2014, 550, 486-494.	1.8	39
123	The sulphidation and oxidation behaviour of sputter-deposited amorphous Alî—,Mo alloys at high temperatures. Corrosion Science, 1993, 34, 183-200.	6.6	38
124	An XPS study of the corrosion behavior of sputter-deposited amorphous Cr-Nb and Cr-Ta alloys in 12 M HCl solution. Corrosion Science, 1994, 36, 511-523.	6.6	38
125	Direct observation of the anodic film on a sputter-deposited amorphous Al-W alloy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1995, 71, 81-90.	0.6	38
126	The effect of heat treatment on the corrosion behavior of sputter-deposited aluminum–chromium alloys. Corrosion Science, 1998, 41, 477-499.	6.6	38

#	Article	IF	CITATIONS
127	Anodic oxidation of an Al–2 wt% Cu alloy: effect of grain orientation. Corrosion Science, 1999, 41, 1089-1094.	6.6	38
128	Impact of RF-GD-OES in practical surface analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2003, 58, 1573-1583.	2.9	38
129	Influence of Film Composition on the Structure and Dielectric Properties of Anodic Films on Ti–W Alloys. Journal of the Electrochemical Society, 2005, 152, B263.	2.9	38
130	Formation of porous anodic alumina in alkaline borate electrolyte. Thin Solid Films, 2007, 515, 5418-5423.	1.8	38
131	Heterogeneous hydrogen evolution on corroding Fe–3at.% Si surface observed by scanning electrochemical microscopy. Electrochimica Acta, 2007, 52, 4246-4253.	5.2	38
132	Fabrication of superoleophobic hierarchical surfaces for low-surface-tension liquids. RSC Advances, 2014, 4, 30927.	3.6	38
133	Electrochemical and xps studies of the corrosion behavior of sputter-deposited amorphous W-Zr alloys in 6 and 12 M HCl solutions. Corrosion Science, 1997, 39, 355-375.	6.6	37
134	Title is missing!. Journal of Applied Electrochemistry, 2002, 32, 993-1000.	2.9	37
135	An attempt at preparation of corrosion-resistant bulk amorphous Ni–Cr–Ta–Mo–P–B alloys. Corrosion Science, 2001, 43, 183-191.	6.6	36
136	Influence of molybdenum species on growth of anodic titania. Electrochimica Acta, 2002, 47, 3837-3845.	5.2	36
137	Effect of Copper Enrichment on the Electrochemical Potential of Binary Al-Cu Alloys. Journal of the Electrochemical Society, 2004, 151, B16.	2.9	36
138	Species separation during coating growth on aluminium by spark anodizing. Surface and Coatings Technology, 2007, 201, 8671-8676.	4.8	36
139	Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate–glycerol electrolyte. Applied Surface Science, 2011, 257, 8190-8195.	6.1	36
140	Methanation of carbon dioxide on Ni/(Zr-Sm)Ox catalysts. Applied Organometallic Chemistry, 2000, 14, 803-808.	3.5	35
141	Oxidation-resistant multilayer coatings using an anodic alumina layer as a diffusion barrier on γ-TiAl substrates. Surface and Coatings Technology, 2005, 200, 2438-2444.	4.8	35
142	Anodic behaviour of a model second phase: Al–20at.%Mg–20at.%Cu. Corrosion Science, 2006, 48, 1225-1248.	6.6	35
143	Formation of porous anodic alumina at high current efficiency. Nanotechnology, 2007, 18, 415605.	2.6	35
144	Photocurrent spectroscopy applied to the characterization of passive films on sputter-deposited Ti–Zr alloys. Corrosion Science, 2008, 50, 2012-2020.	6.6	35

#	Article	IF	CITATIONS
145	The pitting corrosion behavior of sputter-deposited amorphous Alî—,Ti alloys in a neutral chloride-containing solution. Journal of Non-Crystalline Solids, 1990, 125, 25-31.	3.1	34
146	The corrosion behavior of sputter-deposited Mo-Nb alloys in 12 M HCl solution. Corrosion Science, 1996, 38, 1731-1750.	6.6	34
147	Effects of Additional Elements on Electrocatalytic Properties of Thermally Decomposed Manganese Oxide Electrodes for Oxygen Evolution from Seawater. Materials Transactions, JIM, 1997, 38, 899-905.	0.9	34
148	Aanodic oxidation of Al-Ce alloys and inhibitive behaviour of cerium species. Corrosion Science, 1998, 40, 871-885.	6.6	34
149	Influence of interfacial depth on depth resolution during GDOES depth profiling analysis of thin alumina films. Surface and Interface Analysis, 2001, 31, 869-873.	1.8	34
150	Formation of platelet structure carbon nanofilaments by a template method. Carbon, 2004, 42, 2756-2759.	10.3	34
151	Field crystallization of anodic niobia. Corrosion Science, 2007, 49, 580-593.	6.6	34
152	Control of morphology and surface wettability of anodic niobium oxide microcones formed in hot phosphate–glycerol electrolytes. Electrochimica Acta, 2011, 56, 7446-7453.	5.2	34
153	Enhanced thermal performance of phase change material stabilized with textile-structured carbon scaffolds. Solar Energy Materials and Solar Cells, 2020, 205, 110241.	6.2	34
154	La _{0.8} Sr _{0.2} Co _{1-x} Ni <i>_x</i> O _{3-δ} as the Efficient Triple Conductor Air Electrode for Protonic Ceramic Cells. ACS Applied Energy Materials, 2021, 4, 554-563.	5.1	34
155	GDOES depth profiling analysis of a thin surface film on aluminium. Surface and Interface Analysis, 1999, 27, 998-1002.	1.8	33
156	Nanocrystalline manganese-molybdenum-tungsten oxide anodes for oxygen evolution in seawater electrolysis. Scripta Materialia, 2001, 44, 1659-1662.	5.2	33
157	Enrichment of alloying elements in anodized magnesium alloys. Corrosion Science, 2002, 44, 1941-1948.	6.6	33
158	Mechanical properties of barrier-type anodic alumina films using nanoindentation. Surface and Coatings Technology, 2003, 173, 293-298.	4.8	33
159	Incorporation of transition metal ions and oxygen generation during anodizing of aluminium alloys. Corrosion Science, 2004, 46, 2041-2053.	6.6	33
160	Characterization of the Solid State Properties of Anodic Oxides on Magnetron Sputtered Ta, Nb and Ta-Nb Alloys. Journal of the Electrochemical Society, 2011, 159, C33-C39.	2.9	33
161	The corrosion behavior of sputter-deposited amorphous copper-niobium alloys in 12 N HCl. Corrosion Science, 1991, 32, 1213-1225.	6.6	32
162	The corrosion behavior of sputter-deposited Alî—,Zr alloys in 1 M HCl solution. Corrosion Science, 1992, 33, 425-436.	6.6	32

#	Article	IF	CITATIONS
163	Electrochemical and XPS studies of the corrosion behavior of sputter-deposited W-Nb alloys in concentrated hydrochloric acid solutions. Corrosion Science, 1998, 40, 19-42.	6.6	32
164	Surface activation of manganese oxide electrode for oxygen evolution from seawater. Journal of Applied Electrochemistry, 1997, 27, 1362-1368.	2.9	31
165	Electrochemical and XPS studies on the passivation behavior of sputter-deposited W-Cr Alloys in 12 M HCl solution. Corrosion Science, 1998, 40, 155-175.	6.6	31
166	Influences of structure and composition on the photoelectrochemical behaviour of anodic films on Zr and Zr–20at.%Ti. Electrochimica Acta, 2008, 53, 2272-2280.	5.2	31
167	Tracer studies relating to alloying element behaviour in porous anodic alumina formed in phosphoric acid. Electrochimica Acta, 2010, 55, 3175-3184.	5.2	31
168	The corrosion behavior of sputter-deposited Al-Ti alloys in 1 N HCl. Corrosion Science, 1991, 32, 327-335.	6.6	30
169	The corrosion behavior of sputter-deposited amorphous Cr-Ni-Mo alloys in 12 M HCl. Corrosion Science, 1994, 36, 1395-1410.	6.6	30
170	Behavior of Impurity and Minor Alloying Elements during Surface Treatments of Aluminum. Journal of the Electrochemical Society, 2002, 149, B139.	2.9	30
171	Behaviour of copper during alkaline corrosion of Al–Cu alloys. Corrosion Science, 2008, 50, 1475-1480.	6.6	30
172	Depth profile analysis of thin passive films on stainless steel by glow discharge optical emission spectroscopy. Corrosion Science, 2009, 51, 1554-1559.	6.6	30
173	On the unusual morphology of pitting corrosion of amorphous Niî—,Zr alloys. Corrosion Science, 1993, 34, 445-459.	6.6	29
174	The corrosion behaviour of sputter-deposited amorphous Mn-Ti alloys in 0.5 M NaCl solutions. Corrosion Science, 1997, 39, 305-320.	6.6	29
175	The behaviour of iron during anodic oxidation of sputtering-deposited Al–Fe alloys. Corrosion Science, 2001, 43, 1393-1402.	6.6	29
176	Influence of silicon species on the electric properties of anodic niobia. Electrochimica Acta, 2003, 48, 3519-3526.	5.2	29
177	Si–C–O glass-like compound/exfoliated graphite composites for negative electrode of lithium ion battery. Carbon, 2007, 45, 477-483.	10.3	29
178	Influence of silicon on the growth of barrier-type anodic films on titanium. Electrochimica Acta, 2007, 52, 6834-6840.	5.2	29
179	Dielectric breakdown and healing of anodic oxide films on aluminium under single pulse anodizing. Corrosion Science, 2011, 53, 1838-1844.	6.6	29
180	The superhydrophobic properties of self-organized microstructured surfaces derived from anodically oxidized Al/Nb and Al/Ta metal layers. Electrochimica Acta, 2012, 82, 90-97.	5.2	29

#	Article	IF	CITATIONS
181	Physicochemical characterization and photoelectrochemical analysis of iron oxide films. Journal of Solid State Electrochemistry, 2013, 17, 3005-3014.	2.5	29
182	Control of the physical properties of anodic coatings obtained by plasma electrolytic oxidation on Ti6Al4V alloy. Surface and Coatings Technology, 2015, 283, 210-222.	4.8	29
183	Co ₉ S ₈ Nanoparticles Incorporated in Hierarchically Porous 3D Few-Layer Graphene-Like Carbon with S,N-Doping as Superior Electrocatalyst for Oxygen Reduction Reaction. Particle and Particle Systems Characterization, 2017, 34, 1700296.	2.3	29
184	Electrochemically prepared oxides for resistive switching memories. Faraday Discussions, 2019, 213, 165-181.	3.2	29
185	The effect of microcrystallites in the amorphous matrix on the corrosion behavior of melt-spun Crî—,Niî—,P alloys. Corrosion Science, 1991, 32, 433-442.	6.6	28
186	The corrosion behavior of amorphous Niî—,Crî—,P alloys in concentrated hydrofluoric acid. Corrosion Science, 1992, 33, 1519-1528.	6.6	28
187	The sulfidation and oxidation behavior of sputter-deposited amorphous Al-Nb alloys at high temperatures. Corrosion Science, 1996, 38, 1431-1447.	6.6	28
188	An investigation of microgalvanic corrosion using a model magnesium-silicon carbide metal matrix composite. Corrosion Science, 1996, 38, 1721-1729.	6.6	28
189	Non-uniform sputtering and degradation of depth resolution during GDOES depth profiling analysis of thin anodic alumina films grown over rough substrates. Surface and Interface Analysis, 1999, 27, 950-954.	1.8	28
190	Influence of current density in anodizing of an Al–W alloy. Corrosion Science, 2001, 43, 2217-2227.	6.6	28
191	Growth of anodic oxide films on oxygen-containing niobium. Electrochimica Acta, 2005, 50, 5334-5339.	5.2	28
192	The valence state of copper in anodic films formed on Al–1at.% Cu alloy. Corrosion Science, 2005, 47, 1299-1306.	6.6	28
193	Anodic film formation on a sputter-deposited amorphous Al–40 at. % Sm alloy. Journal of Materials Research, 1997, 12, 1885-1891.	2.6	27
194	The sulfidation and oxidation behavior of sputter-deposited Al-Ta alloys at high temperatures. Corrosion Science, 1997, 39, 59-76.	6.6	27
195	Spontaneously passivated films on sputter-deposited Cr-Ti alloys in 6 M HCl solution. Corrosion Science, 1997, 39, 935-948.	6.6	27
196	Ni–Mo–O alloy cathodes for hydrogen evolution in hot concentrated NaOH solution. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 267, 246-253.	5.6	27
197	Anodic film growth on Al–Nd alloys. Corrosion Science, 2000, 42, 1823-1830.	6.6	27
198	Morphology of enriched alloy layers in an anodized Al–Cu alloy. Applied Surface Science, 2003, 205, 121-127.	6.1	27

#	Article	IF	CITATIONS
199	Chromate conversion coatings on aluminium–copper alloys. Corrosion Science, 2005, 47, 341-354.	6.6	27
200	Pit growth behaviour of aluminium under galvanostatic control. Corrosion Science, 2011, 53, 3521-3525.	6.6	27
201	Important Role of Nanopore Morphology in Superoleophobic Hierarchical Surfaces. Journal of Physical Chemistry C, 2012, 116, 23308-23314.	3.1	27
202	The influence of composition on band gap and dielectric constant of anodic Al-Ta mixed oxides. Electrochimica Acta, 2015, 180, 666-678.	5.2	27
203	Anisotropically enhanced heat transfer properties of phase change material reinforced by graphene-wrapped carbon fibers. Solar Energy Materials and Solar Cells, 2020, 206, 110280.	6.2	27
204	A widely applicable strategy to convert fabrics into lithiophilic textile current collector for dendrite-free and high-rate capable lithium metal anode. Chemical Engineering Journal, 2020, 388, 124256.	12.7	27
205	The Effect of Tungsten on the Corrosion Behavior of Amorphous Feâ€Crâ€Wâ€Pâ€C Alloys in 1M   h of the Electrochemical Society, 1991, 138, 76-81.	ICI. Journa	^{al} 26
206	The corrosion behavior of amorphous Ni-Cr-19p alloys in hydrochloric acid. Corrosion Science, 1992, 33, 667-679.	6.6	26
207	The corrosion behavior of amorphous and crystalline Ni-10Ta-20P alloys in 12 M HCl. Corrosion Science, 1996, 38, 1269-1279.	6.6	26
208	The Composition and Morphology of Anodic Films on Alâ€Mo Alloys. Journal of the Electrochemical Society, 1997, 144, 847-855.	2.9	26
209	Anodic film formation on Al - Au alloys: enrichment of gold in the alloy and subsequent evolution of oxygen. Journal Physics D: Applied Physics, 1997, 30, 1833-1841.	2.8	26
210	Development of Ironâ€Rich Layers during Anodic Oxidation of Sputterâ€Deposited Alâ€4 atom % Fe Alloy. Journal of the Electrochemical Society, 1999, 146, 2502-2507.	2.9	26
211	Selective oxidation of aluminium and interfacial enrichment of iron during anodic oxide growth on an Al6Fe phase. Corrosion Science, 2000, 42, 831-840.	6.6	26
212	Porous tantala and alumina films from non-thickness limited anodising in phosphate/glycerol electrolyte. Electrochimica Acta, 2002, 48, 37-42.	5.2	26
213	High-capacity negative electrode materials composed of Si–C–O glass-like compounds and exfoliated graphite for lithium ion battery. Carbon, 2005, 43, 1111-1114.	10.3	26
214	Incorporation of Gold into Porous Anodic Alumina Formed on an Al–Au Alloy. Journal of the Electrochemical Society, 2008, 155, C333.	2.9	26
215	Size-Scaling of Proton Conductivity in Amorphous Aluminosilicate Acid Thin Films. Journal of the American Chemical Society, 2009, 131, 14399-14406.	13.7	26
216	Effect of sulfuric acid on pit propagation behaviour of aluminium under AC etch process. Corrosion Science, 2009, 51, 2364-2370.	6.6	26

#	Article	IF	CITATIONS
217	Formation of porous anodic titanium oxide films in hot phosphate/glycerol electrolyte. Electrochimica Acta, 2010, 55, 3939-3943.	5.2	26
218	Formation of Porous Anodic Films on Carbon Steels and Their Application to Corrosion Protection Composite Coatings Formed with Polypyrrole. Journal of the Electrochemical Society, 2016, 163, C386-C393.	2.9	26
219	Incorporation of Bulk Proton Carriers in Cubic Perovskite Manganite Driven by Interplays of Oxygen and Manganese Redox. Chemistry of Materials, 2019, 31, 8383-8393.	6.7	26
220	The sulfidation and oxidation behavior of sputter-deposited amorphous Al-Nb-Si alloys at high temperatures. Corrosion Science, 1997, 39, 9-26.	6.6	25
221	GDOES depth profiling analysis of amorphous Ni-P-plated aluminium hard disks. Surface and Interface Analysis, 2000, 29, 151-154.	1.8	25
222	High temperature oxidation of a Nb–Al–Si coating sputter-deposited on titanium. Corrosion Science, 2000, 42, 721-729.	6.6	25
223	High resistivity magnesium-rich layers and current instability in anodizing a Mg/Ta alloy. Corrosion Science, 2003, 45, 1779-1792.	6.6	25
224	The influence of nitrogen incorporation on the optical properties of anodic Ta2O5. Electrochimica Acta, 2012, 59, 382-386.	5.2	25
225	In situ X-ray absorption spectroscopy for identification of lead species adsorbed on a nickel surface in acidic perchlorate solution. Journal of Electroanalytical Chemistry, 2012, 671, 7-15.	3.8	25
226	Rapid reduction of titanium dioxide nano-particles by reduction with a calcium reductant. Journal of Physics and Chemistry of Solids, 2014, 75, 1041-1048.	4.0	25
227	Electrochemically prepared oxides for resistive switching devices. Electrochimica Acta, 2018, 274, 103-111.	5.2	25
228	Highâ€Efficiency Direct Ammonia Fuel Cells Based on BaZr _{0.1} Ce _{0.7} Y _{0.2} O _{3â^'} <i>_δ</i> /Pd Oxideâ€Metal Junctions. Global Challenges, 2018, 2, 1700088.	3.6	25
229	Activation of Catalytically Active Edge-Sharing Domains in Ca ₂ FeCoO ₅ for Oxygen Evolution Reaction in Highly Alkaline Media. ACS Applied Materials & Interfaces, 2019, 11, 28823-28829.	8.0	25
230	<i>In Situ</i> Activation of a Manganese Perovskite Oxygen Reduction Catalyst in Concentrated Alkaline Media. Journal of the American Chemical Society, 2021, 143, 6505-6515.	13.7	25
231	Synthesis of Sn@SnO2 core-shell microcapsules by a self-oxidation strategy for medium temperature thermal storage. Chemical Engineering Journal, 2021, 420, 129906.	12.7	25
232	Methanation of carbon dioxide on catalysts derived from amorphous Ni-Zr-rare earth element alloys. Studies in Surface Science and Catalysis, 1998, 114, 261-266.	1.5	24
233	Corrosion behaviour of amorphous Ni–Cr–Nb–P–B bulk alloys in 6M HCl solution. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 318, 77-86. 	5.6	24
234	Improving the performance of aerospace alloys. Aircraft Engineering and Aerospace Technology, 2003, 75, 372-379.	0.8	24

#	Article	IF	CITATIONS
235	Transport numbers of metal and oxygen species in anodic tantala. Corrosion Science, 2004, 46, 2817-2824.	6.6	24
236	Formation of anodic films on sputtering-deposited Al–Hf alloys. Electrochimica Acta, 2009, 54, 1070-1075.	5.2	24
237	Influence of Phosphate Concentration on Plasma Electrolytic Oxidation of AZ80 Magnesium Alloy in Alkaline Aluminate Solution. Materials Transactions, 2010, 51, 94-102.	1.2	24
238	Fabrication of a resistive switching gallium oxide thin film with a tailored gallium valence state and oxygen deficiency by rf cosputtering process. RSC Advances, 2016, 6, 8964-8970.	3.6	24
239	Direct observation of anodic films formed on tantalum in concentrated phosphoric and sulphuric acid solutions. Corrosion Science, 1998, 40, 963-973.	6.6	23
240	Influence of tungsten species on the structure of anodic titania. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 78, 171-188.	0.6	23
241	The degradation of the corrosion resistance of sputter-deposited chromium–titanium alloys by nanoscale heterogeneity. Corrosion Science, 1999, 41, 1871-1890.	6.6	23
242	Migration of oxalate ions in anodic alumina. Electrochimica Acta, 2001, 46, 4379-4382.	5.2	23
243	Ionic Transport in Anodically Oxidized AI/W Layers. Journal of the Electrochemical Society, 2002, 149, B23.	2.9	23
244	Spark anodising of titanium for biomedical applications. Transactions of the Institute of Metal Finishing, 2006, 84, 125-133.	1.3	23
245	Photoelectrochemical characterization of amorphous anodic films on Ti–6at.%Si. Electrochimica Acta, 2013, 110, 517-525.	5.2	23
246	Highly durable platelet carbon nanofiber-supported platinum catalysts for the oxygen reduction reaction. Carbon, 2015, 87, 1-9.	10.3	23
247	Formation and field-assisted dissolution of anodic films on iron in fluoride-containing organic electrolyte. Electrochimica Acta, 2015, 151, 363-369.	5.2	23
248	Analysis of the Anode Reaction of Solid Oxide Electrolyzer Cells with BaZr _{0.4} Ce _{0.4} Y _{0.2} O ₃₋ <i>_δ</i> Electrolytes and Sm _{0.5} Sr _{0.5} CoO ₃₋ <i>_δ</i> Anodes. Journal of the Electrochemical Society, 2018, 165, F342-F349.	2.9	23
249	In Situ Activation of Anodized Ni–Fe Alloys for the Oxygen Evolution Reaction in Alkaline Media. ACS Applied Energy Materials, 2020, 3, 12316-12326.	5.1	23
250	Long-term durability of platelet-type carbon nanofibers for OER and ORR in highly alkaline media. Applied Catalysis A: General, 2020, 597, 117555.	4.3	23
251	The effects of structural relaxation and crystallization on the corrosion behavior of electrodeposited amorphous Niî—,P alloys. Corrosion Science, 1991, 32, 1227-1235.	6.6	22
252	Anodizing of multilayer alloy films formed by sputterâ€deposition of valve metals. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1996, 73, 297-308.	0.6	22

#	Article	IF	CITATIONS
253	The co-enrichment of alloying elements in the substrate by anodic oxidation of Al-Cu-W alloys. Corrosion Science, 1997, 39, 339-354.	6.6	22
254	Synergistic effect of three corrosion-resistant elements on corrosion resistance in concentrated hydrochloric acid. Corrosion Science, 2001, 43, 171-182.	6.6	22
255	Chromate conversion coatings on aluminium: influences of alloying. Corrosion Science, 2004, 46, 297-312.	6.6	22
256	Physicochemical Characterization of Thermally Aged Anodic Films on Magnetron-Sputtered Niobium. Journal of the Electrochemical Society, 2010, 157, C258.	2.9	22
257	Finite Size Effect of Proton-Conductivity of Amorphous Silicate Thin Films Based on Mesoscopic Fluctuation of Glass Network. Journal of the American Chemical Society, 2011, 133, 3471-3479.	13.7	22
258	Highly Enhanced Corrosion Resistance of Stainless Steel by Sol-Gel Layer-by-Layer Aluminosilicate Thin Coatings. Journal of the Electrochemical Society, 2014, 161, C57-C61.	2.9	22
259	A facile one-pot synthesis of FeO /carbon/graphene composites as superior anode materials for lithium-ion batteries. Electrochimica Acta, 2017, 235, 88-97.	5.2	22
260	The corrosion behaviour of sputter-deposited amorphous Niî—,Ti alloys in 1 M HCl. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 181-182, 1128-1132.	5.6	21
261	The corrosion behavior of sputter-deposited amorphous Fe–Cr–Ni–Ta alloys in 12 M HCl. Corrosion Science, 1999, 41, 1849-1869.	6.6	21
262	Anodic film growth in the Alâ \in "Ta alloy system. Corrosion Science, 2003, 45, 1803-1813.	6.6	21
263	Synthesis of submicrometer-sized \hat{l}^2 -SiC particles from the precursors composed of exfoliated graphite and silicone. Carbon, 2004, 42, 737-744.	10.3	21
264	Formation of porous anodic films on Ti–Si alloys in hot phosphate-glycerol electrolyte. Electrochimica Acta, 2007, 53, 1775-1781.	5.2	21
265	Optimized observation of tungsten tracers for investigation of formation of porous anodic alumina. Electrochimica Acta, 2009, 54, 6403-6411.	5.2	21
266	Factors influencing the growth behaviour of nanoporous anodic films on iron under galvanostatic anodizing. Journal of Solid State Electrochemistry, 2012, 16, 3887-3896.	2.5	21
267	Control of Surface Wettability of Aluminum Mesh with Hierarchical Surface Morphology by Monolayer Coating: From Superoleophobic to Superhydrophilic. Journal of Physical Chemistry C, 2016, 120, 15684-15690.	3.1	21
268	Photoelectrochemical evidence of nitrogen incorporation during anodizing sputtering – deposited Al–Ta alloys. Physical Chemistry Chemical Physics, 2016, 18, 351-360.	2.8	21
269	Nitrogenâ€Ðoped Hierarchical Porous Carbon Architecture Incorporated with Cobalt Nanoparticles and Carbon Nanotubes as Efficient Electrocatalyst for Oxygen Reduction Reaction. Advanced Materials Interfaces, 2017, 4, 1700583.	3.7	21
270	The effect of an anode functional layer on the steam electrolysis performances of protonic solid oxide cells. Journal of Materials Chemistry A, 2021, 9, 14032-14042.	10.3	21

#	Article	IF	CITATIONS
271	The effect of hydrogen on the passivity of iron-based and nickel-based amorphous alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 134, 1074-1077.	5.6	20
272	Incorporation and mobility of zinc ions in anodic alumina films. Thin Solid Films, 1997, 292, 150-155.	1.8	20
273	Influence of surface roughness on the depth resolution of GDOES depth profiling analysis. Surface and Interface Analysis, 1999, 27, 153-156.	1.8	20
274	Molybdate/Al(III) composite films on steel and zinc-plated steel by chemical conversion. Corrosion Science, 2002, 44, 1889-1900.	6.6	20
275	Application of the multichannel electrode method to monitoring of corrosion of steel in an artificial crevice. Corrosion Science, 2010, 52, 1179-1186.	6.6	20
276	Electrochemical Impedance Spectroscopy of High-Efficiency Hydrogen Membrane Fuel Cells Based on Sputter-Deposited BaCe _{0.8} Y _{0.2} O _{3â^î´} Thin Films. Journal of Physical Chemistry C, 2016, 120, 15976-15985.	3.1	20
277	Effect of fluorozirconic acid on anodizing of aluminium and AA 2024-T3 alloy in sulphuric and tartaric-sulphuric acids. Surface and Coatings Technology, 2018, 342, 233-243.	4.8	20
278	La _{0.7} Sr _{0.3} Mn _{1–<i>x</i>} Ni _{<i>x</i>} O _{3â~îî} Elector of the Four-Electron Oxygen Reduction Reaction in Concentrated Alkaline Media. Journal of Physical Chemistry C, 2018, 122, 22301-22308.	ctrocataly 3.1	sts 20
279	Evaluation of thin film fuel cells with Zr-rich BaZr _x Ce _{0.8â^'x} Y _{0.2} O _{3â^´î} electrolytes (<i>x</i> ≥ 0.4) fabricated by a single-step reactive sintering method. RSC Advances, 2018, 8, 26309-26317.	3.6	20
280	Proton Pumping Boosts Energy Conversion in Hydrogen-Permeable Metal-Supported Protonic Fuel Cells. ACS Applied Energy Materials, 2020, 3, 1222-1234.	5.1	20
281	Slippery Liquid-Infused Porous Surfaces on Aluminum for Corrosion Protection with Improved Self-Healing Ability. ACS Applied Materials & amp; Interfaces, 2021, 13, 45089-45096.	8.0	20
282	Amorphous nickel-base alloy catalysts for oxidation of carbon monoxide by oxygen and nitrogen monoxide. Applied Catalysis, 1991, 76, 79-93.	0.8	19
283	Void formation and alloy enrichment during anodizing of aluminium alloys containing cadmium, indium and tin. Corrosion Science, 1998, 40, 2125-2139.	6.6	19
284	Composition and structure of enriched alloy layers in filmed Al alloys studied by medium-energy ion scattering. Surface and Interface Analysis, 2001, 31, 480-483.	1.8	19
285	Effects of nanoscale heterogeneity on the corrosion behavior of non-equilibrium alloys. Scripta Materialia, 2001, 44, 1655-1658.	5.2	19
286	Analysis of anodic films on Nb and NbNx by glow discharge optical emission spectroscopy. Surface and Interface Analysis, 2003, 35, 618-622.	1.8	19
287	Formation of oxidation resistant graphite flakes by ultrathin silicone coating. Surface and Coatings Technology, 2005, 194, 24-30.	4.8	19
288	Superhydrophobic hierarchical surfaces fabricated by anodizing of oblique angle deposited Al–Nb alloy columnar films. Applied Surface Science, 2011, 257, 8282-8288.	6.1	19

#	Article	IF	CITATIONS
289	Ex Situ Evidence for the Role of a Fluorideâ€Rich Layer Switching the Growth of Nanopores to Nanotubes: A Missing Piece of the Anodizing Puzzle. ChemElectroChem, 2018, 5, 610-618.	3.4	19
290	Al2O3-Induced Sub-Gap Doping on the IGZO Channel for the Detection of Infrared Light. ACS Applied Electronic Materials, 2020, 2, 1478-1483.	4.3	19
291	Phases in sputter-deposited Cu—Ta alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 156, 211-216.	5.6	18
292	The corrosion behavior of melt-spun Crî—,Nî—,20P alloys in concentrated hydrochloric and hydrofluoric acids. Corrosion Science, 1993, 34, 201-215.	6.6	18
293	Anodic film formation on sputter-deposited amorphous Al-Zr alloys. Journal Physics D: Applied Physics, 1995, 28, 2612-2618.	2.8	18
294	The roles of tantalum and phosphorus in the corrosion behavior of Ni-Ta-P alloys in 12 M HCl. Corrosion Science, 1997, 39, 321-332.	6.6	18
295	An XPS study of passive films on sputter-deposited Cr-Nb alloys in 12 M HCl solution. Corrosion Science, 1998, 40, 821-838.	6.6	18
296	Formation and accommodation of gold atom clusters and oxygen bubbles during amorphous anodic alumina growth. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 455, 385-399.	2.1	18
297	Influence of Thermal and Surface Treatments on Distributions of Lead in Al-Pb Foils. Journal of the Electrochemical Society, 2000, 147, 132.	2.9	18
298	Surface nanotextures on aluminium. Surface and Interface Analysis, 2002, 34, 405-408.	1.8	18
299	Role of metal ion impurities in generation of oxygen gas within anodic alumina. Electrochimica Acta, 2002, 47, 1225-1228.	5.2	18
300	Preparation of non-annealed anatase TiO2 film on ITO substrate by anodizing in hot phosphate/glycerol electrolyte for dye-sensitized solar cells. Materials Letters, 2013, 91, 39-41.	2.6	18
301	Amorphous nickel-valve metal-platinum group metal alloy electrodes for hydrogen-oxygen sulphuric acid fuel cells. Journal of Applied Electrochemistry, 1992, 22, 1017-1024.	2.9	17
302	The corrosion behaviour of sputter-deposited amorphous Mn-Ta alloys in 0.5 M NaCl solution. Corrosion Science, 1997, 39, 1965-1979.	6.6	17
303	XPS and electrochemical studies on the corrosion behaviour of sputter-deposited amorphous Mn-Nb alloys in a neutral chloride solution. Corrosion Science, 1998, 40, 1513-1531.	6.6	17
304	GDOES depth profiling analysis of the air-formed oxide film on a sputter-deposited Type 304 stainless steel. Surface and Interface Analysis, 2000, 29, 743-746.	1.8	17
305	Morphology, composition and structure of anodic films on Al–Cr alloys. Corrosion Science, 2000, 42, 533-544.	6.6	17
306	Roles of aluminium and chromium in sulfidation and oxidation of sputter-deposited Al- and Cr-refractory metal alloys. Corrosion Science, 2002, 44, 285-301.	6.6	17

#	Article	IF	CITATIONS
307	Porous anodic oxides on titanium and on a Ti–W alloy. Corrosion Science, 2008, 50, 548-553.	6.6	17
308	Film growth and alloy enrichment during anodizing AZ31 magnesium alloy in fluoride/glycerol electrolytes of a range of water contents. Electrochimica Acta, 2016, 219, 28-37.	5.2	17
309	Photoelectrochemical evidence of inhomogeneous composition at nm length scale of anodic films on valve metals alloys. Electrochimica Acta, 2016, 201, 333-339.	5.2	17
310	MnO/N–C anode materials for lithium-ion batteries prepared by cotton-templated combustion synthesis. Green Energy and Environment, 2017, 2, 377-386.	8.7	17
311	Electrochemical Oxidation of Hf–Nb Alloys as a Valuable Route to Prepare Mixed Oxides of Tailored Dielectric Properties. Advanced Electronic Materials, 2018, 4, 1800006.	5.1	17
312	Rapid and Repeatable Selfâ€Healing Superoleophobic Porous Aluminum Surface Using Infiltrated Liquid Healing Agent. Advanced Materials Interfaces, 2018, 5, 1800566.	3.7	17
313	Fabrication of superhydrophobic copper metal nanowire surfaces with high thermal conductivity. Applied Surface Science, 2021, 537, 147854.	6.1	17
314	High strength hydrogels enable dendrite-free Zn metal anodes and high-capacity Zn–MnO ₂ batteries <i>via</i> a modified mechanical suppression effect. Journal of Materials Chemistry A, 2022, 10, 3122-3133.	10.3	17
315	Electrochemical and XPS studies of the effects of alloying elements on the corrosion behavior of amorphous Feî—,Crî—,Metalloid alloys in 9 M H2SO4. Corrosion Science, 1993, 34, 1829-1839.	6.6	16
316	The corrosion behavior of amorphous Fe-8Cr-13P-7C and Fe-8Cr-20P alloys in concentrated sulfuric acid. Corrosion Science, 1994, 36, 1537-1550.	6.6	16
317	The effect of phosphorus addition on the corrosion behavior of amorphous Ni-30Ta-P alloys in 12 M HCl. Corrosion Science, 1995, 37, 321-330.	6.6	16
318	Global CO2 Recycling. Zairyo To Kankyo/ Corrosion Engineering, 1996, 45, 614-620.	0.2	16
319	Pitting Corrosion of Amorphous Ni–Zr Alloys in Chloride Ion Containing Sulfuric Acid Solutions. Materials Transactions, JIM, 1997, 38, 443-450.	0.9	16
320	Corrosion-resistant amorphous aluminum alloys and structure of passive films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 920-924.	5.6	16
321	Interactions of alloying elements during anodizing of dilute Al-Au-Cu and Al-W-Zn alloys and consequences for film growth. Corrosion Science, 1998, 41, 291-304.	6.6	16
322	Elastic recoil detection analysis (ERDA), RBS and TEM study of barrier film formation on Al-4.5 at.% Mg-0.05 at.% Cu alloy. Surface and Interface Analysis, 1999, 27, 57-62.	1.8	16
323	Oxidation Behavior of Amorphous Ni-Zr and Ni-Zr-Sm Alloys. Journal of the Electrochemical Society, 2000, 147, 4502.	2.9	16
324	Effects of nanocrystalline heterogeneity on the corrosion behavior of sputter-deposited chromium–niobium alloys. Corrosion Science, 2000, 42, 361-382.	6.6	16

#	Article	IF	CITATIONS
325	Behaviour of hydrogen impurity in aluminium alloys during anodizing. Thin Solid Films, 2003, 424, 201-207.	1.8	16
326	Formation of N2O gas bubbles in anodic films on NbNx alloys. Thin Solid Films, 2003, 429, 159-166.	1.8	16
327	Behaviour of a fast migrating cation species in porous anodic alumina. Corrosion Science, 2008, 50, 3179-3184.	6.6	16
328	Effect of underpotential deposition of lead on polarization behavior of nickel in acidic perchlorate solutions at room temperature. Corrosion Science, 2008, 50, 3139-3146.	6.6	16
329	High Proton Conductivity in Anodic ZrO ₂ /WO ₃ Nanofilms. Angewandte Chemie - International Edition, 2009, 48, 7582-7585.	13.8	16
330	Growth and field crystallization of anodic films on Ta–Nb alloys. Journal of Solid State Electrochemistry, 2012, 16, 1595-1604.	2.5	16
331	Enhanced hydrogen permeability of hafnium nitride nanocrystalline membranes by interfacial hydride conduction. Journal of Materials Chemistry A, 2018, 6, 2730-2741.	10.3	16
332	Incorporation of alloying elements into porous anodic films on aluminium alloys: The role of cell diameter. Electrochimica Acta, 2019, 296, 783-789.	5.2	16
333	Highly Active and Durable FeNiCo Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts Derived from Fluoride Precursors. ACS Sustainable Chemistry and Engineering, 2021, 9, 9465-9473.	6.7	16
334	Metal/Oxide Heterojunction Boosts Fuel Cell Cathode Reaction at Low Temperatures. Advanced Energy Materials, 2021, 11, 2102025.	19.5	16
335	The effect of structural relaxation on the passivation behavior of amorphous Feî—,Crî—,Wî—,Pî—,C alloys. Corrosion Science, 1990, 31, 343-348.	6.6	15
336	The effect of molybdenum on the corrosion behavior of amorphous Feî—,Crî—,Moî—,Pî—,C alloys in hydrochloric acid. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 134, 1033-1036.	5.6	15
337	XPS and electrochemical studies of a melt-spun high chromium-nickel-phosphorus alloy in 6 M HCl. Corrosion Science, 1992, 33, 103-112.	6.6	15
338	On the growth mechanism of the sulphide scale on amorphous Alî—,Mo alloys. Corrosion Science, 1994, 36, 199-202.	6.6	15
339	The effect of phosphorus addition on the corrosion behavior of amorphous Fe-8Cr-P alloys in 9M H2SO4. Corrosion Science, 1995, 37, 709-722.	6.6	15
340	The effect of structural heterogeneity on the pitting corrosion behavior of melt-spun amorphous Niî—,Zr alloys. Corrosion Science, 1997, 39, 2005-2018.	6.6	15
341	Mn–W Oxide Anodes Prepared by Thermal Decomposition for Oxygen Evolution in Seawater Electrolysis. Materials Transactions, JIM, 1998, 39, 308-313.	0.9	15
342	Adhesion of Anodic Films on Aluminum-Lithium Alloys. Corrosion, 1999, 55, 561-565.	1.1	15

#	Article	IF	CITATIONS
343	Microstructure of cobalt dispersed carbon sphere prepared from chelate resin. Synthetic Metals, 2001, 125, 167-170.	3.9	15
344	Growth of porous anodic films on sputtering-deposited aluminium incorporating Al–Hf alloy nanolayers. Electrochimica Acta, 2009, 54, 3662-3670.	5.2	15
345	Amorphous-to-crystalline transition of silicon-incorporated anodic ZrO2 and improved dielectric properties. Electrochimica Acta, 2010, 55, 3144-3151.	5.2	15
346	Thickness-Induced Proton-Conductivity Transition in Amorphous Zirconium Phosphate Thin Films. Chemistry of Materials, 2010, 22, 5528-5536.	6.7	15
347	Enhanced Capacitance of Composite Anodic ZrO ₂ Films Comprising High Permittivity Oxide Nanocrystals and Highly Resistive Amorphous Oxide Matrix. ACS Applied Materials & Interfaces, 2011, 3, 2665-2670.	8.0	15
348	Morphological control of anodic crystalline TiO2 nanochannel films for use in size-selective photocatalytic decomposition of organic molecules. Applied Surface Science, 2014, 301, 500-507.	6.1	15
349	Corrosion protection of iron using porous anodic oxide/conducting polymer composite coatings. Faraday Discussions, 2015, 180, 479-493.	3.2	15
350	Anodic films obtained on Ti6Al4V in aluminate solutions by spark anodizing: Effect of OH â^' and WO 4 â^'2 additions on the tribological properties. Surface and Coatings Technology, 2017, 310, 180-189.	4.8	15
351	The Effect of Nb Incorporation on the Electronic Properties of Anodic HfO ₂ . ECS Journal of Solid State Science and Technology, 2017, 6, N25-N31.	1.8	15
352	Effects of fluoride ions in the growth of barrier-type films on aluminium. Electrochimica Acta, 2017, 245, 854-862.	5.2	15
353	Exothermically Efficient Exfoliation of Biomass Cellulose to Value-Added N-Doped Hierarchical Porous Carbon for Oxygen Reduction Electrocatalyst. Industrial & Engineering Chemistry Research, 2019, 58, 3047-3059.	3.7	15
354	A lithiophilic carbon scroll as a Li metal host with low tortuosity design and "Dead Li―self-cleaning capability. Journal of Materials Chemistry A, 2021, 9, 13332-13343.	10.3	15
355	The effect of magnesium on the corrosion behavior of sputter-deposited amorphous Alî—,Mgî—,Ti ternary alloys in a neutral chloride solution. Corrosion Science, 1993, 34, 27-40.	6.6	14
356	The corrosion behavior of Crî—,P alloys in hydrofluoric acid. Corrosion Science, 1993, 34, 599-613.	6.6	14
357	High Temperature Sulfidation and Oxidation Behavior of Sputter-Deposited Al-refractory Metal Alloys. Materials Transactions, JIM, 1996, 37, 379-382.	0.9	14
358	Anodic Oxidation of Al r Alloys and the Valence State of Chromium. Journal of the Electrochemical Society, 1997, 144, 4217-4222.	2.9	14
359	The incorporation and mobility of chromium species in anodic alumina films. Corrosion Science, 1997, 39, 719-730.	6.6	14
360	Electrochemical and XPS studies of the passivation behavior of sputter-deposited Cr–Ta alloys in 12 M HCl. Corrosion Science, 1998, 40, 1587-1604.	6.6	14

#	Article	IF	CITATIONS
361	Characterization of CO2 methanation catalysts prepared from amorphous Ni-Zr and NI-Zr-rare earth element alloys. Studies in Surface Science and Catalysis, 1998, 114, 451-454.	1.5	14
362	Comparison of depth profiling analysis of a thick, electrolytically-coloured porous alumina film by EPMA and GDOES. Surface and Interface Analysis, 1999, 27, 1046-1049.	1.8	14
363	Influence of current density on transport numbers in anodic oxide films on an anodized Al–5.7at.%W alloy. Corrosion Science, 2003, 45, 2905-2913.	6.6	14
364	Structure of the carbon nanofilaments formed by liquid phase carbonization in porous anodic alumina template. Materials Chemistry and Physics, 2007, 105, 367-372.	4.0	14
365	New amorphous alloys resistant to high temperature corrosion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 181-182, 1099-1103.	5.6	13
366	Enrichment of alloying elements beneath anodic oxides: investigation of Ta–1.5 at.% Cu alloy. Corrosion Science, 2001, 43, 993-1002.	6.6	13
367	Formation of black anodic films on aluminum in acid electrolytes containing titanium complex anion. Surface and Coatings Technology, 2003, 169-170, 155-159.	4.8	13
368	Dielectric and mechanical properties of anodic films in the Ta-Ti system. Surface and Interface Analysis, 2003, 35, 477-482.	1.8	13
369	Recent Development of Highly Corrosion Resistant Bulk Glassy Alloys. Materials Science Forum, 2005, 502, 225-230.	0.3	13
370	Ageing effects in the growth of chromate conversion coatings on aluminium. Corrosion Science, 2005, 47, 145-150.	6.6	13
371	Generation of copper nanoparticles during alkaline etching of an Al–30at.%Cu alloy. Corrosion Science, 2006, 48, 1874-1884.	6.6	13
372	Suppression of Field Crystallization of Anodic Niobia by Oxygen. Journal of the Electrochemical Society, 2006, 153, B173.	2.9	13
373	Pore development during anodizing of Al–3.5Âat.%W alloy in phosphoric acid. Surface and Coatings Technology, 2007, 201, 9506-9511.	4.8	13
374	The stability of passive state of melt-spun amorphous chromium-base alloys. Corrosion Science, 1990, 31, 355-360.	6.6	12
375	Recent studies of chemical properties of amorphous alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 133, 22-25.	5.6	12
376	The high temperature sulfidation behavior of Nb-Al-Si coatings sputter-deposited on a stainless steel. Corrosion Science, 1996, 38, 2031-2042.	6.6	12
377	Anomalously low levels of anion incorporation into anodic oxide films on tungsten. Corrosion Science, 1998, 40, 1229-1238.	6.6	12
378	The behaviour of chromium during anodizing of Al–Cr alloys. Corrosion Science, 1998, 41, 213-227.	6.6	12

#	Article	IF	CITATIONS
379	Influence of argon pressure on the depth resolution during GDOES depth profiling analysis of thin films. Surface and Interface Analysis, 2000, 29, 155-159.	1.8	12
380	Mobility of lithium ions in anodic alumina formed on an Al–Li alloy. Corrosion Science, 2000, 42, 1083-1091.	6.6	12
381	History effects in anodic oxidation of Al-W alloys. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2001, 81, 1579-1595.	0.6	12
382	Direct Plating of Electroless Ni-P Layers on Sputter-Deposited Al-Ni Alloy Films. Journal of the Electrochemical Society, 2003, 150, C461.	2.9	12
383	Role of cathodic half-cycle on AC etch process of aluminium. Corrosion Science, 2010, 52, 2164-2171.	6.6	12
384	Electrochemical Properties of Heated Carbon Nanofibers for Lithium Ion Capacitor. Chemistry Letters, 2014, 43, 898-900.	1.3	12
385	Corrosion control: general discussion. Faraday Discussions, 2015, 180, 543-576.	3.2	12
386	Fabrication of Superoleophobic Surface on Stainless Steel by Hierarchical Surface Roughening and Organic Coating. ISIJ International, 2019, 59, 345-350.	1.4	12
387	The effect of phosphorus on the passivation behavior of Ni-10Ta-P alloys in 12 M HCl. Corrosion Science, 1995, 37, 1313-1324.	6.6	11
388	The effect of molybdenum on the stability of passive films formed on amorphous Fe-Cr-Mo-P-C alloys by potentiostatic polarization in deaerated 1 M HCl. Corrosion Science, 1997, 39, 589-603.	6.6	11
389	The effect of alloying elements on the corrosion behaviour of sputter-deposited amorphous Mn–Ta–Cr alloys in 1 M H2SO4. Corrosion Science, 1998, 40, 1491-1512.	6.6	11
390	Examination of Cross Sections of Thin Films by Atomic Force Microscopy. Journal of the Electrochemical Society, 1999, 146, 3711-3715.	2.9	11
391	Electrochemical and XPS studies of the corrosion behavior of sputter-deposited amorphous Fe–Cr–Ni–Nb alloys in 6 M HCl. Corrosion Science, 1999, 41, 1095-1118.	6.6	11
392	Direct evidence for interfacial enrichment of iron during anodic oxide growth on an Al6Fe phase. Corrosion Science, 1999, 41, 1783-1790.	6.6	11
393	Incorporation and migration of Cr3+ and PO3â^'4 species in anodic alumina. Corrosion Science, 1999, 41, 1971-1976.	6.6	11
394	Importance of amorphous-to-crystalline transitions for ionic transport and oxygen generation in anodic films. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2000, 80, 1027-1042.	0.6	11
395	Thermal degradation of anodic niobia on niobium and oxygen-containing niobium. Thin Solid Films, 2008, 516, 991-998.	1.8	11
396	Formation of porous niobium films by oblique angle deposition: Influence of substrate morphology. Thin Solid Films, 2009, 517, 6711-6716.	1.8	11

#	Article	IF	CITATIONS
397	Depassivation–repassivation behavior of a pure iron surface investigated by micro-indentation. Electrochimica Acta, 2010, 55, 1232-1238.	5.2	11
398	Photo-induced properties of non-annealed anatase TiO2 mesoporous film prepared by anodizing in the hot phosphate/glycerol electrolyte. Applied Surface Science, 2012, 258, 9810-9815.	6.1	11
399	Thickness dependence of proton conductivity of anodic ZrO2–WO3–SiO2 nanofilms. Journal of Power Sources, 2012, 205, 194-200.	7.8	11
400	Efficient growth of anodic films on magnesium in organic electrolytes containing fluoride and water. Electrochemistry Communications, 2014, 46, 30-32.	4.7	11
401	Effect of current density and behaviour of second phases in anodizing of a Mg-Zn-RE alloy in a fluoride/glycerol/water electrolyte. Journal of Solid State Electrochemistry, 2016, 20, 1155-1165.	2.5	11
402	Synthesis and Crystal Structure of a Dinuclear Iron Tetracarbonyl Complex Containing a Ligand , η5, η5-C5Me4CH2CH2CH2C5Me4. Chemistry Letters, 1988, 17, 1041-1044.	1.3	10
403	Nitrogen monoxide decomposition catalysts prepared from amorphous Ni-valve metal-Pd alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 181-182, 1123-1127.	5.6	10
404	The sulphidation behavior of Moî—,Al alloys with low aluminum contents. Corrosion Science, 1994, 36, 1499-1511.	6.6	10
405	Decomposition of nitrogen monoxide over NiTa2O6-supported palladium catalysts prepared from amorphous alloy precursors. Applied Catalysis B: Environmental, 1996, 9, 93-106.	20.2	10
406	Extremely Corrosion-Resistant Bulk Amorphous Alloys. Materials Science Forum, 2001, 377, 1-8.	0.3	10
407	ãfē,¿ãf³ãŠã,^ã³ãfē,¿ãf³å•̂金ã®ã,¢ãfŽãf¼ãf‰é…,åŒ–çš®è†œã®æ§‹é€ã¤çš®è†œæ^é⊷挙動. Hyomen Gijut:	su/bo¤rnal	of th e Surfac
408	Thickness Dependence of Proton Conductivity of Amorphous Aluminosilicate Nanofilm. Electrochemical and Solid-State Letters, 2008, 11, P13.	2.2	10
409	Limiting Current in a Flowingâ€Electrolyteâ€Type Droplet Cell. ChemPhysChem, 2009, 10, 420-426.	2.1	10
410	Incorporation and Migration of Phosphorus Species in Anodic Alumina Films Containing Tungsten Tracer Layers. Journal of the Electrochemical Society, 2010, 157, C437.	2.9	10
411	Thin Film Fuel Cell Based on Nanometer-Thick Membrane of Amorphous Zirconium Phosphate Electrolyte. Journal of the Electrochemical Society, 2011, 158, B866.	2.9	10
412	Observation of selfâ€assembled layers of alkyl phosphonic acid on aluminum using lowâ€voltage scanning electron microscopy and AFM. Surface and Interface Analysis, 2013, 45, 1441-1445.	1.8	10
413	In Situ X-Ray Absorption Spectroscopy Study of Sn Underpotential Deposition on Ni from Perchloric Acid. Journal of the Electrochemical Society, 2014, 161, H195-H202.	2.9	10
414	Strong Lanthanoid Substitution Effect on Electrocatalytic Activity of Double-Perovskite-Type BaLnMn ₂ O ₅ (Ln = Y, Gd, Nd, and La) for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 7081-7087.	3.1	10

#	Article	IF	CITATIONS
415	Fluorineâ€Free Slippery Liquidâ€Infused Porous Surfaces Prepared Using Hierarchically Porous Aluminum. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900836.	1.8	10
416	Highly Durable Oxygen Evolution Reaction Catalyst: Amorphous Oxyhydroxide Derived from Brownmillerite-Type Ca ₂ FeCoO ₅ . ACS Applied Energy Materials, 2020, 3, 5269-5276.	5.1	10
417	Electrochemical synthesis and structure of the first example of a ferrocene dication: propane-1,3-diyl-1,1′-bis(tetramethylcyclopentadienyl)iron(2+). Journal of the Chemical Society Chemical Communications, 1989, , 828-829.	2.0	9
418	The sulfidation and oxidation behavior of sputter-deposited Alî—,Taî—,Si alloys at high temperatures. Corrosion Science, 1997, 39, 1571-1583.	6.6	9
419	The influence of concentration of hydrochloric acid solutions on the passivation behavior of sputter-deposited tungsten rich W–Nb alloys. Corrosion Science, 1998, 40, 1897-1914.	6.6	9
420	Glow discharge optical emission spectroscopy – a powerful tool for the study of compositional non-uniformity in electrodeposited films. Corrosion Science, 2001, 43, 199-205.	6.6	9
421	Role of oxygen bubble generation in anodic film growth on InP. Corrosion Science, 2001, 43, 2173-2184.	6.6	9
422	Enrichment behaviour of gallium in heat and surface treatments of Al–Ga foils. Corrosion Science, 2002, 44, 2725-2735.	6.6	9
423	Radio frequency GDOES depth profiling analysis of a B-doped diamond film deposited onto Si by microwave plasma CVD. Surface and Interface Analysis, 2002, 33, 35-40.	1.8	9
424	Detachment of alumina films from aluminium by 100 keV H+ ions. Surface and Interface Analysis, 2002, 33, 318-321.	1.8	9
425	Barrier and porous anodic oxides on InSb. Corrosion Science, 2008, 50, 1353-1359.	6.6	9
426	Oblique Angle Deposition of Columnar Niobium Films for Capacitor Application. Materials Transactions, 2008, 49, 1320-1326.	1.2	9
427	Improved electrical properties of silicon-incorporated anodic niobium oxide formed on porous Nb–Si substrate. Applied Surface Science, 2009, 255, 8383-8389.	6.1	9
428	Growth of porous anodic alumina films in hot phosphate–glycerol electrolyte. Journal of Solid State Electrochemistry, 2011, 15, 689-696.	2.5	9
429	Formation and dielectric properties of anodic oxide films on Zr–Al alloys. Journal of Solid State Electrochemistry, 2011, 15, 2221-2229.	2.5	9
430	Mechano-electrochemistry of a passive surface using an in situ micro-indentation test. Electrochimica Acta, 2011, 56, 1773-1780.	5.2	9
431	High dispersion and oxygen reduction reaction activity of Co ₃ O ₄ nanoparticles on platelet-type carbon nanofibers. RSC Advances, 2019, 9, 3726-3733.	3.6	9
432	A high-resolution, analytical study of the anodic film formed on GaAs in a tungstate electrolyte. Journal Physics D: Applied Physics, 1996, 29, 2545-2553.	2.8	8

#	Article	IF	CITATIONS
433	Anodic Film Growth on Aluminum Alloys: Interfacial Enrichment of Alloying Elements and Their Mobility in Anodic Films Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 1998, 49, 854-859.	0.2	8
434	Gallium enrichment and film detachment during anodizing of an Al–Ga alloy. Corrosion Science, 2000, 42, 405-419.	6.6	8
435	Influence of surface treatment on detachment of anodic films from Al–Mg alloys. Corrosion Science, 2001, 43, 2349-2357.	6.6	8
436	Behaviour of bismuth during simulated processing of model aluminium capacitor foils. Journal of Materials Science, 2001, 36, 2237-2243.	3.7	8
437	é«~å^†è§£èƒ¼2FE-SEM/ESB/ASBã®æ«"㜗°ãŸã³ãƒŠãƒŽè¡¨é¢å^†æžã®ä,—界. Keikinzoku/Journal of Japan Institute	e ofil4ght N	∕le&als, 200 <mark>6</mark> ,
438	Inhibition of field crystallization of anodic niobium oxide by incorporation of silicon species. Electrochimica Acta, 2008, 53, 8203-8210.	5.2	8
439	Incorporation and migration of phosphorus species within anodic films on an Alâ€W alloy. Surface and Interface Analysis, 2011, 43, 893-902.	1.8	8
440	The Use of Renewable Energy in the Form of Methane Via Electrolytic Hydrogen Generation / Zastosowanie Odnawialnej Energii W Formie Metanu Na Drodze Elektrolitycznej Produkcji Wodoru. Archives of Metallurgy and Materials, 2013, 58, 231-239.	0.6	8
441	Gas sensing properties of the nanostructured anodic Zr–W oxide film. Sensors and Actuators B: Chemical, 2014, 204, 588-595.	7.8	8
442	Growth of barrier-type anodic films on magnesium in ethylene glycol electrolytes containing fluoride and water. Electrochimica Acta, 2015, 179, 402-410.	5.2	8
443	Low-Temperature Oxygen Storage of Cr ^{IV} –Cr ^V Mixed-Valence YCr _{1–<i>x</i>} P _{<i>x</i>} O _{4â°îî} Driven by Local Condensation around Oxygen-Deficient Orthochromite. Journal of the American Chemical Society, 2017, 139, 11197-11206.	13.7	8
444	Influence of Fluorozirconic Acid on Sulfuric Acid Anodizing of Aluminum. Journal of the Electrochemical Society, 2017, 164, C831-C839.	2.9	8
445	High-valence-state manganate(<scp>v</scp>) Ba ₃ Mn ₂ O ₈ as an efficient anode of a proton-conducting solid oxide steam electrolyzer. Inorganic Chemistry Frontiers, 2019, 6, 1587-1597.	6.0	8
446	High-corrosion-resistance mechanism of graphitized platelet-type carbon nanofibers in the OER in a concentrated alkaline electrolyte. Journal of Materials Chemistry A, 2022, 10, 8208-8217.	10.3	8
447	Design of anode functional layers for protonic solid oxide electrolysis cells. Journal of Materials Chemistry A, 2022, 10, 15719-15730.	10.3	8
448	Fast Cis-Trans Isomerization of Square-Planar Bis(diethyl sulfide)platinum(II) Complexes. Reaction ofcis-Dichlorobis(diethylsulfide)platinum(II) with Mesityllithium. Bulletin of the Chemical Society of Japan, 1987, 60, 797-799.	3.2	7
449	Amorphous Fe-valve metal-Pt group metal alloy catalysts for methanation of CO2. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 181-182, 1133-1136.	5.6	7
450	Amorphous Niî—,Nbî—,Pt alloy catalysts for electro-oxidation of ethylene. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 181-182, 1137-1140.	5.6	7

#	Article	IF	CITATIONS
451	GDOES depth profiling analysis and cross-sectional transmission electron microscopy of a hard disk. Surface and Interface Analysis, 2000, 29, 887-890.	1.8	7
452	Behaviour of copper and generation of oxygen during anodizing of Nb-Cu alloys. Surface and Interface Analysis, 2000, 29, 895-902.	1.8	7
453	Current transients during repeated micro-indentation test of passive iron surface in pH 8.4 borate buffer solution. Electrochemistry Communications, 2007, 9, 1672-1676.	4.7	7
454	A numerical model for current transients during micro-indentation of passive iron surface. Electrochimica Acta, 2007, 52, 6901-6910.	5.2	7
455	Dielectric properties of anodic films on sputter-deposited Ti–Si porous columnar films. Applied Surface Science, 2011, 257, 8295-8300.	6.1	7
456	Improved Thermal Stability of Efficient Proton-Conducting Anodic ZrO2-WO3 Nanofilms by Incorporation of Silicon Species. Journal of the Electrochemical Society, 2011, 158, C385.	2.9	7
457	The effects of film thickness and incorporated anions on pitting corrosion of aluminum with barrier-type oxide films formed in neutral borate and phosphate electrolytes. Journal of Solid State Electrochemistry, 2014, 18, 369-376.	2.5	7
458	Effect of Sn2+on Anodic Dissolution of Ni in Perchloric Acid. Journal of the Electrochemical Society, 2014, 161, C550-C556.	2.9	7
459	Fabrication of a micro-porous Ti–Zr alloy by electroless reduction with a calcium reductant for electrolytic capacitor applications. Journal of Alloys and Compounds, 2014, 586, 148-154.	5.5	7
460	Corrosion scales and passive films: general discussion. Faraday Discussions, 2015, 180, 205-232.	3.2	7
461	Employing a T-shirt template and variant of Schweizer's reagent for constructing a low-weight, flexible, hierarchically porous and textile-structured copper current collector for dendrite-suppressed Li metal. Journal of Materials Chemistry A, 2019, 7, 27066-27073.	10.3	7
462	Influence of tungsten species on the structure of anodic titania. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 78, 171-187.	0.6	7
463	Corrosion behavior of sputter-deposited Co-base alloy films in neutral solutions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 181-182, 1109-1113.	5.6	6
464	Amorphous alloy catalysts for decomposition of CCl2F2 by hydrolysis. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 181-182, 1091-1094.	5.6	6
465	The effect of phosphorus addition on the corrosion behavior of ARC-MELTED Niî—,10Taî—,P alloys in 12 M HCl. Corrosion Science, 1996, 38, 469-485.	6.6	6
466	The sulfidation and oxidation behavior of sputter-deposited Cr-refractory metal alloys at high temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 910-914.	5.6	6
467	Passivity and its breakdown on sputter-deposited amorphous Mn-Zr alloys in neutral chloride solutions. Corrosion Science, 1998, 40, 235-250.	6.6	6
468	Direct Observation of Anodic Films Formed on Gallium Phosphide in Aqueous Tungstate Electrolyte. Journal of the Electrochemical Society, 1998, 145, 3011-3015.	2.9	6

#	Article	IF	CITATIONS
469	Direct evidence of the formation of Al ₂ Au nanocrystals at the alloy-film interface of anodized Al-Au alloys. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 77, 267-272.	0.6	6
470	Corrosion-resistant Mnî—,Zrî—,Cr alloys in chloride-containing media. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 267, 285-293.	5.6	6
471	Transmission Electron Microscopy of Non-Thickness-Limited Anodic Films on Tantalum. Journal of the Electrochemical Society, 2002, 149, B531.	2.9	6
472	Interconversion between Rare-Earth Metal(III) Chromates(V) and Low-Crystalline Phases by Reduction with Methanol and Oxidation in Air. Chemistry of Materials, 2003, 15, 2419-2428.	6.7	6
473	Controlled morphology of aluminum alloy nanopillar films: from nanohorns to nanoplates. Nanotechnology, 2010, 21, 395302.	2.6	6
474	Research Trends in Anodizing of Metals. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2016, 67, 508-514.	0.2	6
475	Characterization of Corrosion-resistant, Nanometer-thick, Layer-by-layer Aluminosilicate Coatings Prepared on Stainless Steel. Electrochimica Acta, 2016, 201, 311-319.	5.2	6
476	Application of valence-to-core X-ray emission spectroscopy for identification and estimation of amount of carbon covalently bonded to chromium in amorphous Cr-C coatings prepared by magnetron sputtering. Applied Surface Science, 2018, 427, 566-572.	6.1	6
477	Formation of Mobile Hydridic Defects in Zirconium Nitride Films with n-Type Semiconductor Properties. ACS Applied Electronic Materials, 2021, 3, 3980-3989.	4.3	6
478	Electrochemical Behavior of TiO2Nanotube/Ti Prepared by Anodizing for Micro-Lithium Ion Batteries. Journal of the Korean Electrochemical Society, 2014, 17, 13-17.	0.1	6
479	Decomposition of Nitrogen Monoxide over Amorphous Co–65Zr Alloys Containing Platinum Group Elements. Materials Transactions, JIM, 1993, 34, 725-731.	0.9	5
480	Highly corrosion-resistant amorphous Crî—,Niî—,P alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 181-182, 1114-1118.	5.6	5
481	The effect of microcrystallites in the amorphous matrix on the corrosion behavior of amorphous Fe-8Cr-P alloys. Corrosion Science, 1995, 37, 1411-1422.	6.6	5
482	The Corrosion Behavior of Ni–Ta–5P Alloys in Concentrated Hydrochloric Acid. Materials Transactions, JIM, 1996, 37, 383-388.	0.9	5
483	Hydrogen Evolution Characteristics of Sputter-Deposited Co–Mo, Co–Al and Co–Mo–Al Alloy Electrodes in NaOH Solution. Materials Transactions, JIM, 1998, 39, 1017-1023.	0.9	5
484	Sulfidation- and oxidation-resistant alloys prepared by sputter deposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 267, 267-276.	5.6	5
485	Synthesis of C/B 4 C composites from sugar-boric acid mixed solutions. Molecular Crystals and Liquid Crystals, 2002, 386, 15-20.	0.9	5
486	Radiofrequency GDOES, EPMA and AES analysis of zinc die casting plated with copper, duplex nickel and microporous chromium for corrosion protection. Surface and Interface Analysis, 2003, 35, 611-617.	1.8	5

#	Article	IF	CITATIONS
487	Anodic oxidation of Ta/Fe alloys. Corrosion Science, 2003, 45, 2881-2892.	6.6	5
488	Examination of surface films on aluminium and its alloys by low-voltage scanning and scanning transmission electron microscopy. Corrosion Science, 2004, 46, 2549-2561.	6.6	5
489	Composition and density of non-thickness-limited anodic films on aluminium and tantalum. Thin Solid Films, 2005, 471, 118-122.	1.8	5
490	Phase Transformation and Capacitance Enhancement of Anodic ZrO[sub 2]–SiO[sub 2]. Journal of the Electrochemical Society, 2010, 157, C444.	2.9	5
491	Formation of Self-Organized Nanoporous Anodic Films on Carbon Steel. ECS Transactions, 2013, 50, 183-190.	0.5	5
492	Behavior of Alloying Elements during Anodizing of Mg-Cu and Mg-W Alloys in a Fluoride/Glycerol Electrolyte. Journal of the Electrochemical Society, 2015, 162, C487-C494.	2.9	5
493	Effect of Pb-underpotential deposition on anodic dissolution and passivation of pure Fe and Fe-Ni alloys in acidic perchlorate solution. Journal of Solid State Electrochemistry, 2016, 20, 3133-3142.	2.5	5
494	Brownmillerite-type Ca2 FeCoO5 as a Practicable Oxygen Evolution Reaction Catalyst. ChemSusChem, 2017, 10, 2841-2841.	6.8	5
495	Highly increased capacitance and thermal stability of anodic oxide films on oxygen-incorporated Zr-Ti alloy. Journal of Solid State Electrochemistry, 2017, 21, 2807-2816.	2.5	5
496	Anodic film growth and silver enrichment during anodizing of an Mg-0.6â€ ⁻ at.% Ag alloy in fluoride-containing organic electrolytes. Electrochimica Acta, 2018, 280, 300-307.	5.2	5
497	Ultra-rapid formation of crystalline anatase TiO2 films highly doped with substrate species by a cathodic deposition method. Electrochemistry Communications, 2019, 108, 106561.	4.7	5
498	Characterization of Dark-Colored Nanoporous Anodic Films on Zinc. Coatings, 2020, 10, 1014.	2.6	5
499	Spinel-Type Metal Oxide Nanoparticles Supported on Platelet-Type Carbon Nanofibers as a Bifunctional Catalyst for Oxygen Evolution Reaction and Oxygen Reduction Reaction. Electrochemistry, 2020, 88, 566-573.	1.4	5
500	Raman and glow discharge optical emission spectroscopy studies on structure and anion incorporation properties of a hydrated alumina film on aluminum. Applied Surface Science, 2022, 592, 153321.	6.1	5
501	Novel Al-Mo and Al-Mo-Si Alloys Resistant to Sulfidizing and Oxidizing Environments. Zairyo To Kankyo/ Corrosion Engineering, 1995, 44, 174-182.	0.2	4
502	Similarity and Difference in Roles of Chromium and Molybdenum in Passivating Amorphous Alloys in Concentrated Acids. Materials Science Forum, 1995, 185-188, 779-788.	0.3	4
503	Incorporation of Tungsten Species into the Anodic Film on Zrâ€2.7 Atom Percent W Alloy. Journal of the Electrochemical Society, 1997, 144, 3492-3495.	2.9	4
504	Change in Pitting Susceptibility with Alloy Heterogeneity Induced by Crystallization of Amorphous Alloys. Materials Science Forum, 1998, 289-292, 629-640.	0.3	4

#	Article	IF	CITATIONS
505	The formation of anodic oxides on InAs at high efficiency in sodium tungstate electrolyte. Thin Solid Films, 2000, 371, 303-309.	1.8	4
506	Formation of anodic oxides on Al0.2Ga0.8As and Al0.8Ga0.2As in tungstate electrolytes. Corrosion Science, 2000, 42, 1839-1851.	6.6	4
507	Reproducibility in r.fGDOES depth profiling analysis of thin films. Surface and Interface Analysis, 2001, 31, 1085-1086.	1.8	4
508	Anodic oxidation of InAlAs. Corrosion Science, 2006, 48, 126-136.	6.6	4
509	Synthesis and characterization of balloons and porous blocks of β-SiC using silicone and urethane foam. Journal of the European Ceramic Society, 2007, 27, 405-412.	5.7	4
510	Evaluation of Materials Surface Using Capillary Micro-cell Technique. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2008, 59, 863-863.	0.2	4
511	Growth of Porous Anodic Films on Niobium in Hot Phosphate-Glycerol Electrolyte. ECS Transactions, 2008, 16, 345-351.	0.5	4
512	Ion-conducting, sub-100Ânm-thick film of amorphous hafnium silicate. Solid State Ionics, 2010, 181, 115-121.	2.7	4
513	Percolative proton conductivity of sol–gel derived amorphous aluminosilicate thin films. Physical Chemistry Chemical Physics, 2012, 14, 2735.	2.8	4
514	Compositional Dependence of the Proton Conductivity of Anodic ZrO2-WO3-SiO2Nanofilms at Intermediate Temperatures. Journal of the Electrochemical Society, 2013, 160, F1096-F1102.	2.9	4
515	Highly increased breakdown potential of anodic films on aluminum using a sealed porous layer. Journal of Solid State Electrochemistry, 2018, 22, 2073-2081.	2.5	4
516	The role of tungsten species in the transition of anodic nanopores to nanotubes formed on iron alloyed with tungsten. Electrochimica Acta, 2019, 309, 274-282.	5.2	4
517	Compositional variations in anodic nanotubes/nanopores formed on Fe 100, 110 and 111 single crystals. Electrochimica Acta, 2020, 364, 137316.	5.2	4
518	Unveiling the Role of Al ₂ O ₃ Interlayer in Indium–Gallium–Zinc–Oxide Transistors. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000621.	1.8	4
519	Anisotropy of Electric Conductivity of Carbon and Graphite Films Derived from Kapton-type Polyimide. Tanso, 2002, 2002, 171-173.	0.1	4
520	Enhanced Performance of Protonic Solid Oxide Steam Electrolysis Cell of Zr-Rich Side BaZr _{0.6} Ce _{0.2} Y _{0.2} O _{3â^îî} Electrolyte with an Anode Functional Layer. ACS Omega, 2022, 7, 9944-9950.	3.5	4
521	Effect of silicon preimplantation on carbon nitride formation by nitrogen implantation into glassy carbon. Nuclear Instruments & Methods in Physics Research B, 1999, 152, 301-306.	1.4	3
522	GDOES Depth Profiling Analysis and Cross-sectional Transmission Electron Microscopy of a Ni-P/Al Hard Disk Substrate Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2000, 51, 518-523.	0.2	3

#	Article	IF	CITATIONS
523	Morphology and composition of layered anodic films on InP. Journal of Materials Science, 2001, 36, 1253-1259.	3.7	3
524	Transient anodic oxidation of an Al–W alloy: effects of current ratio. Corrosion Science, 2002, 44, 751-760.	6.6	3
525	Damage of alumina films by medium energy hydrogen and helium ions. Nuclear Instruments & Methods in Physics Research B, 2002, 197, 265-270.	1.4	3
526	Oxygen generation in anodized Ta–Cu alloys. Philosophical Magazine, 2003, 83, 2733-2746.	1.6	3
527	Compositional Self-Organizing in the Anodic Film on a Mg-Ta Alloy. Journal of the Electrochemical Society, 2003, 150, B439.	2.9	3
528	Synthesis of Nano-carbon Materials Using a Porous Alulmina Template Formed by Anodizing of Etched Aluminum Foil. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2005, 56, 352-353.	0.2	3
529	Behaviour of zinc in electropolished and etched Al–Zn alloys and effect on corrosion potential. Corrosion Science, 2005, 47, 2321-2331.	6.6	3
530	ãfãf«ãf−金属ã,¢ãfŽãf¼ãf‰é…,åŒ−皮膜ã®çµæ™¶åŒ−. Hyomen Gijutsu/Journal of the Surface Finishi	ng Soz iety	of k apan, 200
531	The Influence of Thermal Treatment on the Electronic Properties of a-Nb2O5. ECS Transactions, 2009, 19, 411-422.	0.5	3
532	Influence of current density on the distribution of tungsten tracer in porous anodic alumina films. Surface and Interface Analysis, 2010, 42, 247-251.	1.8	3
533	Anodic oxides on InAlP formed in sodium tungstate electrolyte. Corrosion Science, 2010, 52, 595-601.	6.6	3
534	Proton-Conductivity of Amorphous Aluminum Phosphate Thin Films under Anhydrous Conditions. Journal of the Electrochemical Society, 2011, 158, P41.	2.9	3
535	Porous Anodic Film Growth on a Zr-W Alloy. Electrochemical and Solid-State Letters, 2012, 15, C8.	2.2	3
536	(Invited) Fabrication of Super-Oil-Repellent Surfaces by Two-Step Anodizing of Aluminum. ECS Transactions, 2013, 50, 217-224.	0.5	3
537	Mixed Proton Electron Conductivity of Calcium Chromate(V) Apatite. ECS Electrochemistry Letters, 2014, 3, F61-F64.	1.9	3
538	Electrochemical Analysis of Hydrogen Membrane Fuel Cells with Amorphous Zirconium Phosphate Thin Film Electrolyte. Electrochemistry, 2014, 82, 859-864.	1.4	3
539	Growth of Barrier Type Anodic Film on Magnesium in Ethylene Glycol-Water Mixed Electrolytes Containing Fluoride and Phosphate. Materials Transactions, 2016, 57, 1552-1559.	1.2	3
540	Formation of quasi-spherical Au48-198 clusters in anodic titania nanotubes grown on Ti-Au alloys.	4.7	3

Electrochemistry Communications, 2020, 120, 106847.

#	Article	IF	CITATIONS
541	Development of Hydrogen-Permeable Metal Support Electrolysis Cells. ACS Applied Energy Materials, 2022, 5, 1385-1389.	5.1	3
542	Passivity of amorphous and crystalline Niî—,Ti alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 134, 1025-1028.	5.6	2
543	Amorphous alloy electrodes for anodic oxidation of sulfite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 181-182, 1081-1084.	5.6	2
544	Effect of phosphorus on the passivation behavior of amorphous Feî—,8Crî—,13Pî—,7C alloy in 9M H2SO4 solution. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 181-182, 1119-1122.	5.6	2
545	NO decomposition catalysts prepared from amorphous NiTaPd alloys. Applied Catalysis B: Environmental, 1997, 11, 243-255.	20.2	2
546	Sulphide precipitation above anodic alumina formed in thiomolybdate electrolyte. Surface and Coatings Technology, 1997, 89, 262-269.	4.8	2
547	The behaviour of ion-implanted tungsten species during anodic oxidation of aluminium. Journal Physics D: Applied Physics, 1998, 31, 2083-2090.	2.8	2
548	Influence of oxidation rate and alloy composition on alloy enrichments of anodized Al–W alloys. Corrosion Science, 2003, 45, 2915-2923.	6.6	2
549	Field Crystallization of Anodic Niobia on Nb-O Substrates. ECS Transactions, 2006, 1, 343-349.	0.5	2
550	Electrochemical Capacitance of Nitrogen-Containing Nanocarbons Prepared Using Porous Anodic Alumina Template. Electrochemistry, 2008, 76, 197-202.	1.4	2
551	Anodic Behavior of Nickel in Acidic Perchlorate Solution Containing Pb ²⁺ . ECS Transactions, 2009, 16, 109-116.	0.5	2
552	Ion Migration and Film Morphologies in Anodic Alumina Films Formed in Selenate Electrolyte. Journal of the Electrochemical Society, 2012, 159, C312-C317.	2.9	2
553	Formation and Dielectric Properties of Anodic Films Formed on Ta-W Alloys at Various Formation Voltages. Electrochemistry, 2013, 81, 840-844.	1.4	2
554	Characterization of Self-Assembled Monolayer on Anodized Aluminum by XPS, AFM and Low-Voltage SEM. ECS Transactions, 2014, 58, 75-83.	0.5	2
555	Measurement of Adhesion Strength of Al Electroplating Film on AZ31, AZ61, and AZ91 Substrates. ECS Transactions, 2016, 75, 297-304.	0.5	2
556	Pd nanoparticles on zeolite imidazolide framework-8: Preparation, characterization, and evaluation of fixed-bed hydrogenation activity toward isomeric nitrophenols. Colloids and Interface Science Communications, 2021, 43, 100446.	4.1	2
557	Enhancement of Electrolyte Properties for High Energy Density Supercapacitors by using Additive Materials. Journal of Electrochemical Science and Technology, 2016, 7, 214-217.	2.2	2

Recent studies of chemical properties of amorphous alloys. , 1991, , 22-25.

#	Article	IF	CITATIONS
559	The sulfidation and oxidation behavior of sputter-deposited Alî—,Nbî—,Mo alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 267, 277-284.	5.6	1
560	Acid- and Alkali-Resistant Film Generation on an Al-Mn-Ce Alloy. Transactions of the Institute of Metal Finishing, 1999, 77, 95-98.	1.3	1
561	Reducing Gas Sensing Based on the Redox Interconversion of Neodymium (III) Chromate(V). Chemistry Letters, 2004, 33, 992-993.	1.3	1
562	Origin of Hydrogen in Anodized Niobium. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2006, 57, 676-678.	0.2	1
563	Synthesis of single-and multi-component carbides utilizing exfoliated graphite. Tanso, 2006, 2006, 8-13.	0.1	1
564	Corrosion of Amorphous and Nanograined Alloys. , 2010, , 2192-2204.		1
565	GDOES Depth Profile Analysis of Interfacial Enrichment of Copper during Anodizing of Al-Cu Alloy. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2015, 66, 670-672.	0.2	1
566	Redox-induced proton insertion and desertion of zircon-type neodymium chromate(V). Solid State Ionics, 2016, 285, 175-179.	2.7	1
567	Formation of Nanoporous NiFe2O4Oxide Films by Anodizing of Fe-Ni Alloy. ECS Transactions, 2017, 75, 67-75.	0.5	1
568	High Efficiency Hydrogen Membrane Fuel Cells with BaCe0.8Y0.2O3-Î Electrolyte Thin Films and Pd1-xAgxSolid Anodes. Journal of the Electrochemical Society, 2017, 164, F577-F581.	2.9	1
569	High Efficiency Direct Ammonia Type Fuel Cells based on BaZrxCe0.8-XY0.2O3/Pd Oxide-Metal Junctions. ECS Transactions, 2017, 78, 1511-1515.	0.5	1
570	Influence of Metallic Powder Contents on Corrosion Resistance of Galvanized Steel with Metal Powder-containing Organic Coatings for Automobile Fuel Tanks. ISIJ International, 2017, 57, 2207-2213.	1.4	1
571	Exâ€Situ Evidence for the Role of a Fluoride-Rich Layer Switching the Growth of Nanopores to Nanotubes: A Missing Piece of the Anodizing Puzzle. ChemElectroChem, 2018, 5, 570-570.	3.4	1
572	Diffusion-controlled Growth of TiO ₂ Mesoporous Anodic Films in Hot Phosphate/glycerol Electrolytes. Electrochemistry, 2018, 86, 184-189.	1.4	1
573	In situ X-ray absorption spectroscopy of Sn species adsorbed on platinized platinum electrode in perchloric acid solution containing stannous ions. Journal of Solid State Electrochemistry, 2019, 23, 2261-2275.	2.5	1
574	Fabrication of Mushroom-Like Nanostructures on Stainless Steel Surface by Combination of Heat Treatment and Electrochemical Etching. Materials Transactions, 2021, 62, 836-845.	1.2	1
575	Formation of Porous Aluminum Films with Isolated Columnar Structure Using Physical Vapor Deposition for Medium-Voltage and High-voltage Capacitors. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2009, 60, 166-169.	0.2	1
576	Brownmillerite-type Ca ₂ Fe _{0.75} Co _{1.25} O ₅ as a Robust Electrocatalyst for Oxygen Evolution Reaction in Neutral Conditions. Sustainable Energy and Fuels, 0,	4.9	1

#	Article	IF	CITATIONS
577	Sputter-deposited amorphous Al–Mo–Si alloys resistant to high temperature sulfidation and oxidation. , 1994, , 309-312.		0
578	Effect of cathodic reduction on catalytic activity of amorphous alloy electrodes for electrooxidation of sulfite. Journal of Applied Electrochemistry, 1995, 25, 953.	2.9	0
579	The Corrosion Behavior of Sputter-Deposited Amorphous Al-Cr-Ti Alloys in 1 M HCl. Materials Science Forum, 1995, 185-188, 809-818.	0.3	0
580	The Microcomposite Structure of Catalysts Prepared by Oxidation of Amorphous Ni–Ta–Pd Alloys. Materials Transactions, JIM, 1997, 38, 123-132.	0.9	0
581	Application of Sputter Deposition Technique to the Preparation of Amorphous Alloy-Derived Catalysts for NO Decomposition. Materials Transactions, JIM, 1997, 38, 643-649.	0.9	0
582	Formation of Extremely Protective Diffusion-Barrier Scales on Novel Al-Refractory Metal Alloys during High Temperature Sulfidation. Solid State Phenomena, 2000, 72, 17-22.	0.3	0
583	Plasma Electrochemical Synthesis of Protective Coatings on WE54 Magnesium Alloy. , 2005, , 592-598.		0
584	Power-law scaling of proton conductivity in amorphous silicate thin films. Solid State Ionics, 2011, 192, 93-96.	2.7	0
585	Characterization of the Solid State Properties of Anodic Oxides on Ta-Nb Alloys as a Function of the Anodizing Conditions. ECS Transactions, 2011, 41, 293-310.	0.5	0
586	Influence of Yttrium Addition on the High Capacitance of ZrO2-SiO2 Nanocomposite Anodic Oxide Films. ECS Transactions, 2013, 50, 245-254.	0.5	0
587	Hydrogen Membrane Fuel Cells with Metal/Insulator/Metal Structure. ECS Transactions, 2013, 57, 911-916.	0.5	0
588	High Proton Conductivity in Anodic ZrO2-WO3-SiO2 Nanofilms. ECS Transactions, 2013, 50, 193-201.	0.5	0
589	機èf½æ€§éžå¹³è¡¡ç‰©è³ªã®å‰µè£½ãë界é¢é›»æ°—化å¦ãf—ãfã,»ã,¹ã®è§£æž• Electrochemistry, 201	3, £4, 583	-583.
590	Topical issue on "Corrosion of metals and physicochemical characterization of passive and corroding surfaces―devoted to celebrate the 72nd birthday of Dr. Masahiro Seo. Journal of Solid State Electrochemistry, 2015, 19, 3425-3426.	2.5	0
591	Growth of Passive Films on Valve Metals and Their Alloys. , 2018, , 250-258.		0
592	Corrosion Behavior of Galvanized Steel with Organic Coatings Containing Metallic Powders. Zairyo To Kankyo/ Corrosion Engineering, 2018, 67, 41-49.	0.2	0
593	(Invited) Highly Active OER Electrodes Derived from Fe-Doped Ni Oxyfluoride Formed by Anodizing of NiFe Electrodeposits. ECS Meeting Abstracts, 2021, MA2021-01, 1906-1906.	0.0	0
594	Methods for Production of Amorphous and Nanocrystalline Materials and Their Unique Properties. Advances in Materials Research, 2001, , 87-132.	0.2	0

#	Article	IF	CITATIONS
595	Global CO2 Recycling — Novel Materials, Reduction of CO2 Emissions, and Prospects. Advances in Materials Research, 2001, , 166-185.	0.2	0
596	Amorphous-to-Crystalline Transition of Anodic Niobia. , 2006, , 211-216.		0
597	High temperature corrosion of sputter-deposited Al–Nb alloys. , 1994, , 243-246.		0
598	Anodizing for Photocatalysts. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2018, 69, 609-612.	0.2	0
599	Porous Anodic Films on Iron. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2018, 69, 616-620.	0.2	0
600	Fabrication of Superhydrophobic and Superoleophobic Surfaces on Stainless Steels. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2019, 70, 604-607.	0.2	0
601	(Invited) Highly Durable Platelet-Type Carbon Nanofibers for Oer in Alkaline Electrolyte. ECS Meeting Abstracts, 2020, MA2020-01, 2805-2805.	0.0	0
602	Compositional Variations in Porous Anodic Oxides Formed on Fe(100), Fe(110) and Fe(111) Single Crystals. ECS Meeting Abstracts, 2020, MA2020-01, 2785-2785.	0.0	0
603	Converting Fabric to Textile Nickel Current Collector with Ag2s Decoration for Producing Dendrite-Free Lithium Metal Anode. ECS Meeting Abstracts, 2020, MA2020-02, 402-402.	0.0	0
604	(Invited) Anodizing of Metals for Fabrication of Functional Nanostructured Surfaces. ECS Meeting Abstracts, 2020, MA2020-02, 1202-1202.	0.0	0
605	Performance Evaluation of Intermediate Temperature Proton-Conducting Soec with BaZr _{0.6} Ce _{0.2} Y _{0.2} O _{3-δ} Electrolyte. ECS Meeting Abstracts, 2020, MA2020-02, 3616-3616.	0.0	0
606	(Invited) Incorporation of Bulk Proton Carriers in Manganese Perovskites Triggered By Charge Disproportionation between Metal and Oxygen Atoms. ECS Meeting Abstracts, 2020, MA2020-02, 2637-2637.	0.0	0
607	Numerical Simulation of OXIDE-ION Blocking Effect in Hydrogen Permeable Metal-Supported Fuel Cell. ECS Meeting Abstracts, 2020, MA2020-02, 2624-2624.	0.0	0
608	Spinel-Type Metal Oxide Nanoparticles Supported on Platelet-Type Carbon Nanofibers for Oxygen Evolution Reaction and Oxygen Reduction Reaction. ECS Meeting Abstracts, 2020, MA2020-02, 3618-3618.	0.0	0
609	The Role of Hydrated Alumina Layer on the Incorporation of Electrolyte Species in Anodizing of Aluminum. ECS Meeting Abstracts, 2020, MA2020-02, 1233-1233.	0.0	0
610	Activation of Water Splitting Alloy Electrodes by Anodizing. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2021, 72, 593-598.	0.2	0
611	High Strength Hydrogel Enables Dendrite-Free Zn Metal Anodes and High-Capacity Zn-MnO ₂ Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 560-560.	0.0	0