Chun-Hai Fan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5827897/chun-hai-fan-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

56,000 118 214 731 h-index g-index citations papers 801 63,410 7.82 10.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
731	Ionic Current Fluctuation and Orientation of Tetrahedral DNA Nanostructures in a Solid-State Nanopore <i>Small</i> , 2022 , e2107237	11	O
730	Programmable DNA Hydrogels as Artificial Extracellular Matrix Small, 2022, e2107640	11	5
729	DNA-Based Concatenated Encoding System for High-Reliability and High-Density Data Storage <i>Small Methods</i> , 2022 , e2101335	12.8	1
728	Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples <i>Nature Biomedical Engineering</i> , 2022 ,	19	22
727	Benzyl-rich ligand engineering of the photostability of atomically precise gold nanoclusters <i>Chemical Communications</i> , 2022 ,	5.8	1
726	Pharmaceutical applications of framework nucleic acids Acta Pharmaceutica Sinica B, 2022, 12, 76-91	15.5	4
725	Computer vision-aided bioprinting for bone research <i>Bone Research</i> , 2022 , 10, 21	13.3	O
724	Programmable design of isothermal nucleic acid diagnostic assays through abstraction-based models <i>Nature Communications</i> , 2022 , 13, 1635	17.4	O
723	Advances in aptamer-based nuclear imaging European Journal of Nuclear Medicine and Molecular Imaging, 2022 , 1	8.8	1
722	DNA Nanotechnology for Plasmonics 2022 , 271-323		
721	A smartphone-based three-in-one biosensor for co-detection of SARS-CoV-2 viral RNA, antigen and antibody <i>Chemical Communications</i> , 2022 , 58, 6108-6111	5.8	2
720	Engineering DNA-Guided Hydroxyapatite Bulk Materials with High Stiffness and Outstanding Antimicrobial Ability for Dental Inlay Applications <i>Advanced Materials</i> , 2022 , e2202180	24	O
719	Programming Receptor Clustering with DNA Probabilistic Circuits for Enhanced Natural Killer Cell Recognition <i>Angewandte Chemie - International Edition</i> , 2022 , e202203800	16.4	1
718	Gold-Nanoparticle-Mediated Assembly of High-Order DNA Nano-Architectures Small, 2022, e2200824	11	1
717	Molecular Visualization of Early-Stage Acute Kidney Injury with a DNA Framework Nanodevice <i>Advanced Science</i> , 2022 , e2105947	13.6	2
716	Protein-Mimicking Nanoparticles in Biosystems Advanced Materials, 2022, e2201562	24	2
715	Optically Controlled Ultrafast Terahertz Metadevices with Ultralow Pump Threshold (Small 44/2021). <i>Small</i> , 2021 , 17, 2170233	11	1

Recent Progress in the Transfer of Graphene Films and Nanostructures.. Small Methods, 2021, 5, e2100771.8 3 714 Electrochemically driven assembly of framework nucleic acids. Journal of Electroanalytical 4.1 713 Chemistry, 2021, 905, 115901 Controlling Water Flow through a Synthetic Nanopore with Permeable Cations.. ACS Central Science 16.8 1 712 , **2021**, 7, 2092-2098 28.7 711 A DNA nanodevice boosts tumour immunity. Nature Nanotechnology, 2021, 4 Aptamer-modified DNA tetrahedra-gated metal-organic framework nanoparticle carriers for 710 9.4 10 enhanced chemotherapy or photodynamic therapy. Chemical Science, 2021, 12, 14473-14483 Empowering single-molecule analysis with self-assembled DNA nanostructures. Matter, 2021, 4, 3121-31457 709 Addition-Elimination Mechanism-Activated Nucleotide Transition Sequencing for RNA Dynamics 708 7.8 O Profiling. *Analytical Chemistry*, **2021**, 93, 13974-13980 Optically Controlled Ultrafast Terahertz Metadevices with Ultralow Pump Threshold. Small, 2021, 707 11 4 17, e2104275 Nanomechanical Induction of Autophagy-Related Fluorescence in Single Cells with Atomic Force 706 13.6 2 Microscopy. Advanced Science, 2021, 8, e2102989 Programming CircLigase Catalysis for DNA Rings and Topologies. Analytical Chemistry, 2021, 93, 1801-18/1.8 705 Significantly Improving the Bioefficacy for Rheumatoid Arthritis with Supramolecular 704 24 18 Nanoformulations. Advanced Materials, 2021, 33, e2100098 pH- and miRNA-Responsive DNA-Tetrahedra/Metal-Organic Framework Conjugates: Functional 16.7 703 21 Sense-and-Treat Carriers. ACS Nano, 2021, 15, 6645-6657 Probing the Intracellular Dynamics of Nitric Oxide and Hydrogen Sulfide Using an Activatable NIR II 3.6 702 4 Fluorescence Reporter. Angewandte Chemie, 2021, 133, 8531-8535 X-ray-Based Techniques to Study the Nano-Bio Interface. ACS Nano, 2021, 15, 3754-3807 701 18 Probing the Intracellular Dynamics of Nitric Oxide and Hydrogen Sulfide Using an Activatable NIR II 16.4 700 21 Fluorescence Reporter. Angewandte Chemie - International Edition, 2021, 60, 8450-8454 Probing the Formation Kinetics and Thermodynamics with Rationally Designed Analytical Tools 699 Enables One-Pot Synthesis and Purification of a Tetrahedral DNA Nanostructure. Analytical 7.8 Chemistry, **2021**, 93, 7045-7053 Dynamic regulation of DNA nanostructures by noncanonical nucleic acids. NPG Asia Materials, 2021, 698 10.3 3 13, General Synthesis of Ultrafine Monodispersed Hybrid Nanoparticles from Highly Stable 697 24 11 Monomicelles. Advanced Materials, 2021, 33, e2100820

696	Precisely Controlled Vertical Alignment in Mesostructured Carbon Thin Films for Efficient Electrochemical Sensing. <i>ACS Nano</i> , 2021 , 15, 7713-7721	16.7	7
695	Proteomic Exploration of Endocytosis of Framework Nucleic Acids. <i>Small</i> , 2021 , 17, e2100837	11	5
694	DNA Origami-Based Nanoprinting for the Assembly of Plasmonic Nanostructures with Single-Molecule Surface-Enhanced Raman Scattering. <i>Angewandte Chemie</i> , 2021 , 133, 11801-11807	3.6	О
693	DNA Origami-Based Nanoprinting for the Assembly of Plasmonic Nanostructures with Single-Molecule Surface-Enhanced Raman Scattering. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11695-11701	16.4	22
692	Epigenetic Remodeling Hydrogel Patches for Multidrug-Resistant Triple-Negative Breast Cancer. <i>Advanced Materials</i> , 2021 , 33, e2100949	24	23
691	DNA Assembly-Based Stimuli-Responsive Systems. <i>Advanced Science</i> , 2021 , 8, 2100328	13.6	11
690	An Oligonucleotide-Distortion-Responsive Organic Transistor for Platinum-Drug-Induced DNA-Damage Detection. <i>Advanced Materials</i> , 2021 , 33, e2100489	24	4
689	Catalytic DNA Origami-based Chiral Plasmonic Biosensor. <i>Chemical Research in Chinese Universities</i> , 2021 , 37, 914-918	2.2	2
688	Poly-Adenine-Based Spherical Nucleic Acids for Efficient Live-Cell MicroRNA Capture. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14438-14445	16.4	3
687	Poly-Adenine-Based Spherical Nucleic Acids for Efficient Live-Cell MicroRNA Capture. <i>Angewandte Chemie</i> , 2021 , 133, 14559-14566	3.6	
686	Metal-Bridged Graphene-Protein Supraparticles for Analog and Digital Nitric Oxide Sensing. <i>Advanced Materials</i> , 2021 , 33, e2007900	24	3
685	DNA origami single crystals with Wulff shapes. <i>Nature Communications</i> , 2021 , 12, 3011	17.4	7
684	Sequential Therapy of Acute Kidney Injury with a DNA Nanodevice. <i>Nano Letters</i> , 2021 , 21, 4394-4402	11.5	13
683	Biocomputing Based on DNA Strand Displacement Reactions. ChemPhysChem, 2021, 22, 1151-1166	3.2	7
682	Multi-Mode Reconfigurable DNA-Based Chemical Reaction Circuits for Soft Matter Computing and Control. <i>Angewandte Chemie</i> , 2021 , 133, 15140-15146	3.6	3
681	Prescribing Silver Chirality with DNA Origami. <i>Journal of the American Chemical Society</i> , 2021 , 143, 8639	9-8 6 .46	12
680	Nanobooster-encapsulated hybrid RNA as anti-tumor viral mimicry. <i>Nano Today</i> , 2021 , 38, 101211	17.9	8
679	Multi-Mode Reconfigurable DNA-Based Chemical Reaction Circuits for Soft Matter Computing and Control. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 15013-15019	16.4	9

(2021-2021)

678	DNA Framework-Engineered Long-Range Electrostatic Interactions for DNA Hybridization Reactions. <i>Angewandte Chemie</i> , 2021 , 133, 16829-16835	3.6	
677	A library of thermotropic liquid crystals of inorganic nanoparticles and extraordinary performances based on their collective ordering. <i>Nano Today</i> , 2021 , 38, 101115	17.9	6
676	Responsive optical probes for deep-tissue imaging: Photoacoustics and second near-infrared fluorescence. <i>Advanced Drug Delivery Reviews</i> , 2021 , 173, 141-163	18.5	12
675	DNA Framework-Engineered Long-Range Electrostatic Interactions for DNA Hybridization Reactions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16693-16699	16.4	7
674	Remote Photothermal Control of DNA Origami Assembly in Cellular Environments. <i>Nano Letters</i> , 2021 , 21, 5834-5841	11.5	3
673	Encoding Fluorescence Anisotropic Barcodes with DNA Fameworks. <i>Journal of the American Chemical Society</i> , 2021 , 143, 10735-10742	16.4	6
672	Asymmetric reconstruction of mammalian reovirus reveals interactions among RNA, transcriptional factor \$\tilde{\mu}\$2 and capsid proteins. <i>Nature Communications</i> , 2021 , 12, 4176	17.4	1
671	Nucleic Acid Tests for Clinical Translation. <i>Chemical Reviews</i> , 2021 , 121, 10469-10558	68.1	23
670	Pairwise Proximity-Differentiated Visualization of Single-Cell DNA Epigenetic Marks. <i>Angewandte Chemie</i> , 2021 , 133, 3470-3474	3.6	2
669	Probing of coupling effect induced plasmonic charge accumulation for water oxidation. <i>National Science Review</i> , 2021 , 8, nwaa151	10.8	16
668	Biosensors based on DNA logic gates. View, 2021 , 2, 20200038	7.8	4
667	Designer DNA nanostructures for therapeutics. <i>CheM</i> , 2021 , 7, 1156-1179	16.2	27
666	Probing Transient DNA Conformation Changes with an Intercalative Fluorescent Excimer. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6624-6630	16.4	2
665	Near-Field Nanoscopic Terahertz Imaging of Single Proteins. <i>Small</i> , 2021 , 17, e2005814	11	12
664	Tracking endocytosis and intracellular distribution of spherical nucleic acids with correlative single-cell imaging. <i>Nature Protocols</i> , 2021 , 16, 383-404	18.8	5
663	Fine Customization of Calcium Phosphate Nanostructures with Site-Specific Modification by DNA Templated Mineralization. <i>ACS Nano</i> , 2021 , 15, 1555-1565	16.7	10
662	Optochemical Control of DNA-Switching Circuits for Logic and Probabilistic Computation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3397-3401	16.4	19
661	Novel aptasensor-based assay of sonic hedgehog ligand for detection of portal vein invasion of hepatocellular carcinoma. <i>Biosensors and Bioelectronics</i> , 2021 , 174, 112738	11.8	4

660	Pairwise Proximity-Differentiated Visualization of Single-Cell DNA Epigenetic Marks. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3428-3432	16.4	8
659	Optochemical Control of DNA-Switching Circuits for Logic and Probabilistic Computation. <i>Angewandte Chemie</i> , 2021 , 133, 3439-3443	3.6	3
658	DNA nanotechnology-empowered nanoscopic imaging of biomolecules. <i>Chemical Society Reviews</i> , 2021 , 50, 5650-5667	58.5	24
657	DNA origami. <i>Nature Reviews Methods Primers</i> , 2021 , 1,		96
656	A nano-integrated microfluidic biochip for enzyme-based point-of-care detection of creatinine. <i>Chemical Communications</i> , 2021 , 57, 4726-4729	5.8	4
655	Encoding DNA Frameworks for Amplified Multiplexed Imaging of Intracellular microRNAs. <i>Analytical Chemistry</i> , 2021 , 93, 2226-2234	7.8	18
654	Electric Fano resonance-based terahertz metasensors. <i>Nanoscale</i> , 2021 , 13, 18467-18472	7.7	8
653	Assembly Pathway Selection with DNA Reaction Circuits for Programming Multiple Cell-Cell Interactions. <i>Journal of the American Chemical Society</i> , 2021 , 143, 3448-3454	16.4	22
652	Probing Transient DNA Conformation Changes with an Intercalative Fluorescent Excimer. <i>Angewandte Chemie</i> , 2021 , 133, 6698-6704	3.6	
651	Titelbild: Optochemical Control of DNA-Switching Circuits for Logic and Probabilistic Computation (Angew. Chem. 7/2021). <i>Angewandte Chemie</i> , 2021 , 133, 3353-3353	3.6	
650	Engineering Allosteric Ribozymes to Detect Thiamine Pyrophosphate in Whole Blood. <i>Analytical Chemistry</i> , 2021 , 93, 4277-4284	7.8	3
649	Advances in Whole-Cell Photobiological Hydrogen Production. <i>Advanced NanoBiomed Research</i> , 2021 , 1, 2000051	O	1
648	Terahertz Wave Enhances Permeability of the Voltage-Gated Calcium Channel. <i>Journal of the American Chemical Society</i> , 2021 , 143, 4311-4318	16.4	30
647	Cryogenic Electron Microscopy for Resolving DNA Nanostructures and Their Complexes. <i>Small Structures</i> , 2021 , 2, 2100053	8.7	1
646	Protein-Mimicking Nanoparticles for a Cellular Regulation of Homeostasis. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 31331-31336	9.5	8
645	Reconstructing Soma-Soma Synapse-like Vesicular Exocytosis with DNA Origami. <i>ACS Central Science</i> , 2021 , 7, 1400-1407	16.8	6
644	From mouse to mouse-ear cress: Nanomaterials as vehicles in plant biotechnology. <i>Exploration</i> , 2021 , 1, 9-20		13
643	Modular DNA Circuits for Point-of-Care Colorimetric Assay of Infectious Pathogens. <i>Analytical Chemistry</i> , 2021 , 93, 13861-13869	7.8	2

642 Programming Molecular Circuitry and Intracellular Computing with Framework Nucleic Acids **2021**, 77-103

641	Hydrophobic collapse-driven nanoparticle coating with poly-adenine adhesives. <i>Chemical Communications</i> , 2021 , 57, 3801-3804	5.8	5
640	Recent Advances of DNA Nanostructure-Based Cell Membrane Engineering. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2001718	10.1	12
639	Data Storage Based on DNA. Small Structures, 2021, 2, 2000046	8.7	10
638	Driving DNA Origami Assembly with a Terahertz Wave Nano Letters, 2021,	11.5	5
637	Encoding quantized fluorescence states with fractal DNA frameworks. <i>Nature Communications</i> , 2020 , 11, 2185	17.4	15
636	Intracellular Entropy-Driven Multi-Bit DNA Computing for Tumor Progression Discrimination. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 13267-13272	16.4	28
635	Ultrafast DNA Sensors with DNA Framework-Bridged Hybridization Reactions. <i>Journal of the American Chemical Society</i> , 2020 , 142, 9975-9981	16.4	17
634	Programming PAM antennae for efficient CRISPR-Cas9 DNA editing. <i>Science Advances</i> , 2020 , 6, eaay994	& 14.3	6
633	DNA-Edited Ligand Positioning on Red Blood Cells to Enable Optimized T Cell Activation for Adoptive Immunotherapy. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14842-14853	16.4	30
632	Intracellular Entropy-Driven Multi-Bit DNA Computing for Tumor Progression Discrimination. <i>Angewandte Chemie</i> , 2020 , 132, 13369-13374	3.6	8
631	Programming Biomimetically Confined Aptamers with DNA Frameworks. ACS Nano, 2020, 14, 8776-878	316.7	9
630	DNA-Edited Ligand Positioning on Red Blood Cells to Enable Optimized T Cell Activation for Adoptive Immunotherapy. <i>Angewandte Chemie</i> , 2020 , 132, 14952-14963	3.6	1
629	Information stored in nanoscale: Encoding data in a single DNA strand with Base64. <i>Nano Today</i> , 2020 , 33, 100871	17.9	9
628	Direct DNA Methylation Profiling with an Electric Biosensor. ACS Nano, 2020, 14, 6743-6751	16.7	9
627	Programming Switchable Transcription of Topologically Constrained DNA. <i>Journal of the American Chemical Society</i> , 2020 , 142, 10739-10746	16.4	20
626	Genetically encoded X-ray cellular imaging for nanoscale protein localization. <i>National Science Review</i> , 2020 , 7, 1218-1227	10.8	8
625	Engineering a chemoenzymatic cascade for sustainable photobiological hydrogen production with green algae. <i>Energy and Environmental Science</i> , 2020 , 13, 2064-2068	35.4	8

624	Encapsulation and release of living tumor cells using hydrogels with the hybridization chain reaction. <i>Nature Protocols</i> , 2020 , 15, 2163-2185	18.8	25
623	Capturing transient antibody conformations with DNA origami epitopes. <i>Nature Communications</i> , 2020 , 11, 3114	17.4	26
622	Unraveling Cell-Type-Specific Targeted Delivery of Membrane-Camouflaged Nanoparticles with Plasmonic Imaging. <i>Nano Letters</i> , 2020 , 20, 5228-5235	11.5	18
621	DNA Framework-Based Topological Cell Sorters. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10406-10410	16.4	20
620	DNA Origami-Enabled Engineering of Ligand-Drug Conjugates for Targeted Drug Delivery. <i>Small</i> , 2020 , 16, e1904857	11	25
619	DNA Framework-Based Topological Cell Sorters. <i>Angewandte Chemie</i> , 2020 , 132, 10492-10496	3.6	2
618	Classifying Cell Types with DNA-Encoded Ligand-Receptor Interactions on the Cell Membrane. <i>Nano Letters</i> , 2020 , 20, 3521-3527	11.5	11
617	Near-IR emissive rare-earth nanoparticles for guided surgery. <i>Theranostics</i> , 2020 , 10, 2631-2644	12.1	20
616	Shaping Functional Materials with DNA Frameworks. <i>Trends in Chemistry</i> , 2020 , 2, 137-147	14.8	8
615	Ultrasensitive analysis of microRNAs with gold nanoparticle-decorated molybdenum disulfide nanohybrid-based multilayer nanoprobes. <i>Chemical Communications</i> , 2020 , 56, 9012-9015	5.8	8
614	Engineered Anisotropic Fluids of Rare-Earth Nanomaterials. <i>Angewandte Chemie</i> , 2020 , 132, 18370-183	7 4 6	4
613	PolyA-based DNA bonds with programmable bond length and bond energy. <i>NPG Asia Materials</i> , 2020 , 12,	10.3	5
612	Engineered Anisotropic Fluids of Rare-Earth Nanomaterials. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18213-18217	16.4	12
611	DNA-based artificial molecular signaling system that mimics basic elements of reception and response. <i>Nature Communications</i> , 2020 , 11, 978	17.4	35
610	Programming bulk enzyme heterojunctions for biosensor development with tetrahedral DNA framework. <i>Nature Communications</i> , 2020 , 11, 838	17.4	44
609	Treating Acute Kidney Injury with Antioxidative Black Phosphorus Nanosheets. <i>Nano Letters</i> , 2020 , 20, 1447-1454	11.5	54
608	Near-Atomic Fabrication with Nucleic Acids. ACS Nano, 2020, 14, 1319-1337	16.7	13
607	Mechanically Strong Globular-Protein-Based Fibers Obtained Using a Microfluidic Spinning Technique. <i>Angewandte Chemie</i> , 2020 , 132, 4374-4378	3.6	10

(2020-2020)

606	Differentiated Visualization of Single-Cell 5-Hydroxymethylpyrimidines with Microfluidic Hydrogel Encoding. <i>Journal of the American Chemical Society</i> , 2020 , 142, 2889-2896	16.4	18
605	Nanoparticle-Assisted Alignment of Carbon Nanotubes on DNA Origami. <i>Angewandte Chemie</i> , 2020 , 132, 4922-4926	3.6	3
604	A Chemical Approach for Real-time Monitoring Neuronal Activities. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 729-730	2.2	
603	DNA Nanoribbon-Templated Self-Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11836-11844	16.4	25
602	Prescribing DNA Origami Patterns via Scaffold Decoration. <i>Small</i> , 2020 , 16, e2000793	11	7
601	COVID-19: A Call for Physical Scientists and Engineers. ACS Nano, 2020, 14, 3747-3754	16.7	129
600	Functional DNA Structures and Their Biomedical Applications. CCS Chemistry, 2020, 2, 707-728	7.2	18
599	Framework Nucleic Acids for Cell Imaging and Therapy. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 1-9	2.2	7
598	Nanoparticle-Assisted Alignment of Carbon Nanotubes on DNA Origami. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4892-4896	16.4	16
597	Implementing digital computing with DNA-based switching circuits. <i>Nature Communications</i> , 2020 , 11, 121	17.4	50
596	Metal-Organic Framework Nanoparticles for Ameliorating Breast Cancer-Associated Osteolysis. <i>Nano Letters</i> , 2020 , 20, 829-840	11.5	34
595	DNA Framework-Encoded Mineralization of Calcium Phosphate. <i>CheM</i> , 2020 , 6, 472-485	16.2	31
594	Programming nanoparticle valence bonds with single-stranded DNA encoders. <i>Nature Materials</i> , 2020 , 19, 781-788	27	88
593	Mechanically Strong Globular-Protein-Based Fibers Obtained Using a Microfluidic Spinning Technique. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4344-4348	16.4	34
592	Automated Nanoplasmonic Analysis of Spherical Nucleic Acids Clusters in Single Cells. <i>Analytical Chemistry</i> , 2020 , 92, 1333-1339	7.8	6
591	Size-Independent Transmembrane Transporting of Single Tetrahedral DNA Nanostructures. <i>Global Challenges</i> , 2020 , 4, 1900075	4.3	12
590	Catalytic Nucleic Acids for Bioanalysis ACS Applied Bio Materials, 2020, 3, 2674-2685	4.1	7
589	An Organelle-Specific Nanozyme for Diabetes Care in Genetically or Diet-Induced Models. <i>Advanced Materials</i> , 2020 , 32, e2003708	24	35

588	Blood exposure to graphene oxide may cause anaphylactic death in non-human primates. <i>Nano Today</i> , 2020 , 35, 100922	17.9	16
587	Programmable Live-Cell CRISPR Imaging with Toehold-Switch-Mediated Strand Displacement. <i>Angewandte Chemie</i> , 2020 , 132, 20793-20799	3.6	5
586	Bioinspired DNA Nanointerface with Anisotropic Aptamers for Accurate Capture of Circulating Tumor Cells. <i>Advanced Science</i> , 2020 , 7, 2000647	13.6	15
585	A protein-independent fluorescent RNA aptamer reporter system for plant genetic engineering. <i>Nature Communications</i> , 2020 , 11, 3847	17.4	10
584	Programmable Live-Cell CRISPR Imaging with Toehold-Switch-Mediated Strand Displacement. Angewandte Chemie - International Edition, 2020 , 59, 20612-20618	16.4	19
583	DNA-Based Fabrication for Nanoelectronics. <i>Nano Letters</i> , 2020 , 20, 5604-5615	11.5	13
582	Label-Free and Three-Dimensional Visualization Reveals the Dynamics of Plasma Membrane-Derived Extracellular Vesicles. <i>Nano Letters</i> , 2020 , 20, 6313-6319	11.5	9
581	Expanding detection windows for discriminating single nucleotide variants using rationally designed DNA equalizer probes. <i>Nature Communications</i> , 2020 , 11, 5473	17.4	3
580	DNA Origami Nanostructures with Scaffolds Obtained from Rolling Circle Amplification 2020 , 2, 1322-1	1327	2
579	Circularized blocker-displacement amplification for multiplex detection of rare DNA variants. <i>Chemical Communications</i> , 2020 , 56, 12331-12334	5.8	4
578	DNA Framework-Supported Electrochemical Analysis of DNA Methylation for Prostate Cancers. <i>Nano Letters</i> , 2020 , 20, 7028-7035	11.5	9
577	Meta-DNA structures. <i>Nature Chemistry</i> , 2020 , 12, 1067-1075	17.6	41
576	Engineering DNA nanostructures for siRNA delivery in plants. <i>Nature Protocols</i> , 2020 , 15, 3064-3087	18.8	13
575	Extracellular vesicles engineered with valency-controlled DNA nanostructures deliver CRISPR/Cas9 system for gene therapy. <i>Nucleic Acids Research</i> , 2020 , 48, 8870-8882	20.1	39
574	DNA-Guided Room-Temperature Synthesis of Single-Crystalline Gold Nanostructures on Graphdiyne Substrates. <i>ACS Central Science</i> , 2020 , 6, 779-786	16.8	7
573	DNA Origami Radiometers for Measuring Ultraviolet Exposure. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8782-8789	16.4	13
572	Programming Cell-Cell Communications with Engineered Cell Origami Clusters. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8800-8808	16.4	50
571	DNA Nanoribbon-Templated Self-Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. <i>Angewandte Chemie</i> , 2020 , 132, 11934-11942	3.6	5

570	DNA framework-engineered electrochemical biosensors. Science China Life Sciences, 2020, 63, 1130-114	11 8.5	8
569	Nucleic Acids Analysis. <i>Science China Chemistry</i> , 2020 , 64, 1-33	7.9	33
568	DNA nanostructure-encoded fluorescent barcodes. <i>Aggregate</i> , 2020 , 1, 107-116	22.9	4
567	Robust Biological Fibers Based on Widely Available Proteins: Facile Fabrication and Suturing Application. <i>Small</i> , 2020 , 16, e1907598	11	21
566	Theranostic Nanoplatform with Hydrogen Sulfide Activatable NIR Responsiveness for Imaging-Guided On-Demand Drug Release. <i>Angewandte Chemie</i> , 2019 , 131, 16982-16986	3.6	9
565	Nonlinear Regulation of Enzyme-Free DNA Circuitry with Ultrasensitive Switches. <i>ACS Synthetic Biology</i> , 2019 , 8, 2106-2112	5.7	9
564	Imaging Chladni Figure of Plasmonic Charge Density Wave in Real Space. ACS Photonics, 2019, 6, 2685-2	2693	2
563	Quantizing single-molecule surface-enhanced Raman scattering with DNA origami metamolecules. <i>Science Advances</i> , 2019 , 5, eaau4506	14.3	67
562	Engineered Bacillus subtilis biofilms as living glues. <i>Materials Today</i> , 2019 , 28, 40-48	21.8	41
561	Quantitative Measurement of Spatial Effects of DNA Origami on Molecular Binding Reactions Detected using Atomic Force Microscopy. <i>ACS Applied Materials & Detected Samp; Interfaces</i> , 2019 , 11, 21973-2198	31 ^{9.5}	5
560	An Intelligent DNA Nanorobot with Enhanced Protein Lysosomal Degradation of HER2. <i>Nano Letters</i> , 2019 , 19, 4505-4517	11.5	91
559	In situ terminus-regulated DNA hydrogelation for ultrasensitive on-chip microRNA assay. <i>Biosensors and Bioelectronics</i> , 2019 , 137, 263-270	11.8	17
558	Citrate-assisted efficient local delivery of naked oligonucleotide into live mouse brain cells. <i>Cell Proliferation</i> , 2019 , 52, e12622	7.9	2
557	Reprogramming of cancer invasiveness and macrophage education via a nanostructured antagonist of the TGFI receptor. <i>Materials Horizons</i> , 2019 , 6, 1675-1681	14.4	11
556	Forum on Translational DNA Nanotechnology. ACS Applied Materials & Translational DNA Nanotechnology. ACS Applied Materials & Translational DNA Nanotechnology.	13834	2
555	Programming Motions of DNA Origami Nanomachines. <i>Small</i> , 2019 , 15, e1900013	11	20
554	DNA nanostructures coordinate gene silencing in mature plants. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 7543-7548	11.5	103
553	Visualizing mRNA in live mammalian cells. <i>Methods</i> , 2019 , 161, 16-23	4.6	6

552	Mechanical Stress-Dependent Autophagy Component Release via Extracellular Nanovesicles in Tumor Cells. <i>ACS Nano</i> , 2019 , 13, 4589-4602	16.7	22
551	Translocation of tetrahedral DNA nanostructures through a solid-state nanopore. <i>Nanoscale</i> , 2019 , 11, 6263-6269	7.7	10
550	Framework nucleic acids as programmable carrier for transdermal drug delivery. <i>Nature Communications</i> , 2019 , 10, 1147	17.4	106
549	Directing curli polymerization with DNA origami nucleators. <i>Nature Communications</i> , 2019 , 10, 1395	17.4	14
548	Virus-Mimicking Cell Capture Using Heterovalency Magnetic DNA Nanoclaws. <i>ACS Applied Materials</i> & Samp; Interfaces, 2019 , 11, 12244-12252	9.5	21
547	Chiral Metamolecules with Active Plasmonic Transition. <i>ACS Nano</i> , 2019 , 13, 4826-4833	16.7	39
546	Nanofabrication based on DNA nanotechnology. <i>Nano Today</i> , 2019 , 26, 123-148	17.9	17
545	Programming Rotary Motions with a Hexagonal DNA Nanomachine. <i>Chemistry - A European Journal</i> , 2019 , 25, 5158-5162	4.8	9
544	DNA Nanotechnology-Enabled Drug Delivery Systems. <i>Chemical Reviews</i> , 2019 , 119, 6459-6506	68.1	447
543	Redox Engineering of Cytochrome c using DNA Nanostructure-Based Charged Encapsulation and Spatial Control. <i>ACS Applied Materials & Description of Cytochrome Cusing DNA Nanostructure-Based Charged Encapsulation and Spatial Control. ACS Applied Materials & DNA Nanostructure-Based Charged Encapsulation and Spatial Control. ACS Applied Materials & DNA Nanostructure-Based Charged Encapsulation and Spatial Control. ACS Applied Materials & DNA Nanostructure-Based Charged Encapsulation and Spatial Control. ACS Applied Materials & DNA Nanostructure-Based Charged Encapsulation and Spatial Control. ACS Applied Materials & DNA Nanostructure-Based Charged Encapsulation and Spatial Control. ACS Applied Materials & DNA Nanostructure-Based Charged Encapsulation and Spatial Control. ACS Applied Materials & DNA Nanostructure-Based Charged Encapsulation and Spatial Control. ACS Applied Materials & DNA Nanostructure-Based Charged Encapsulation and Charged Enc</i>	9.5	17
542	Stochastic DNA Walkers in Droplets for Super-Multiplexed Bacterial Phenotype Detection. Angewandte Chemie - International Edition, 2019 , 58, 15448-15454	16.4	49
541	Stochastic DNA Walkers in Droplets for Super-Multiplexed Bacterial Phenotype Detection. <i>Angewandte Chemie</i> , 2019 , 131, 15594-15600	3.6	22
540	Organizing End-Site-Specific SWCNTs in Specific Loci Using DNA. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11923-11928	16.4	27
539	Fractal Nanoplasmonic Labels for Supermultiplex Imaging in Single Cells. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11938-11946	16.4	23
538	Locus-patterned sequence oriented enrichment for multi-dimensional gene analysis. <i>Chemical Science</i> , 2019 , 10, 8421-8427	9.4	3
537	Two-dimensional nanomaterials for biosensing applications. <i>TrAC - Trends in Analytical Chemistry</i> , 2019 , 119, 115610	14.6	59
536	DNA-Based Hybrid Hydrogels Sustain Water-Insoluble Ophthalmic Therapeutic Delivery against Allergic Conjunctivitis. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 26704-26710	9.5	13
535	Solidifying framework nucleic acids with silica. <i>Nature Protocols</i> , 2019 , 14, 2416-2436	18.8	22

534	Theranostic Nanoplatform with Hydrogen Sulfide Activatable NIR Responsiveness for Imaging-Guided On-Demand Drug Release. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16826	-168 3 0	73
533	Encoding Carbon Nanotubes with Tubular Nucleic Acids for Information Storage. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17861-17866	16.4	27
532	InnenrEktitelbild: Stochastic DNA Walkers in Droplets for Super-Multiplexed Bacterial Phenotype Detection (Angew. Chem. 43/2019). <i>Angewandte Chemie</i> , 2019 , 131, 15699-15699	3.6	
531	DNA Framework-Programmed Cell Capture via Topology-Engineered Receptor-Ligand Interactions. Journal of the American Chemical Society, 2019 , 141, 18910-18915	16.4	72
530	Single-Step Organization of Plasmonic Gold Metamaterials with Self-Assembled DNA Nanostructures. <i>Research</i> , 2019 , 2019, 7403580	7.8	22
529	Programming chain-growth copolymerization of DNA hairpin tiles for in-vitro hierarchical supramolecular organization. <i>Nature Communications</i> , 2019 , 10, 1006	17.4	18
528	Programming Accessibility of DNA Monolayers for Degradation-Free Whole-Blood Biosensors 2019 , 1, 671-676		10
527	DNA origami cryptography for secure communication. <i>Nature Communications</i> , 2019 , 10, 5469	17.4	36
526	Programming Drug Delivery Kinetics for Active Burst Release with DNA Toehold Switches. <i>Journal of the American Chemical Society</i> , 2019 , 141, 20354-20364	16.4	47
525	Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. <i>Chemical Reviews</i> , 2019 , 119, 12208-12278	68.1	153
524	Programming DNA origami patterning with non-canonical DNA-based metallization reactions. <i>Nature Communications</i> , 2019 , 10, 5597	17.4	42
523	Programming biosensing sensitivity by controlling the dimension of nanostructured electrode. <i>Analytical and Bioanalytical Chemistry</i> , 2019 , 411, 4085-4092	4.4	3
522	Myelin Sheath as a Dielectric Waveguide for Signal Propagation in the Mid-Infrared to Terahertz Spectral Range. <i>Advanced Functional Materials</i> , 2019 , 29, 1807862	15.6	40
521	Alleviated Inhibition of Single Enzyme in Confined and Crowded Environment. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 82-89	6.4	6
520	Engineering electrochemical interface for biomolecular sensing. <i>Current Opinion in Electrochemistry</i> , 2019 , 14, 71-80	7.2	18
519	Graphene-based nanomaterials in biosystems. <i>Nano Research</i> , 2019 , 12, 247-264	10	37
518	Solving mazes with single-molecule DNA navigators. <i>Nature Materials</i> , 2019 , 18, 273-279	27	121
517	Constructing Submonolayer DNA Origami Scaffold on Gold Electrode for Wiring of Redox Enzymatic Cascade Pathways. <i>ACS Applied Materials & Discrete Scales</i> , 2019, 11, 13881-13887	9.5	14

516	Impact of Graphene Exposure on Microbial Activity and Community Ecosystem in Saliva <i>ACS Applied Bio Materials</i> , 2019 , 2, 226-235	4.1	O
515	Poly-adenine-mediated spherical nucleic acids for strand displacement-based DNA/RNA detection. <i>Biosensors and Bioelectronics</i> , 2019 , 127, 85-91	11.8	23
514	Molecular Threading-Dependent Mass Transport in Paper Origami for Single-Step Electrochemical DNA Sensors. <i>Nano Letters</i> , 2019 , 19, 369-374	11.5	26
513	Programmable and printable Bacillus subtilis biofilms as engineered living materials. <i>Nature Chemical Biology</i> , 2019 , 15, 34-41	11.7	127
512	Biomimetische DNA-Nanorfiren: Gezielte Synthese und Anwendung nanoskopischer Kanle. <i>Angewandte Chemie</i> , 2019 , 131, 9092-9108	3.6	3
511	Biomimetic DNA Nanotubes: Nanoscale Channel Design and Applications. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8996-9011	16.4	38
510	Advances in Nanowire Transistor-Based Biosensors. Small Methods, 2018, 2, 1700263	12.8	33
509	Biomacromolecular nanostructures-based interfacial engineering: from precise assembly to precision biosensing. <i>National Science Review</i> , 2018 , 5, 740-755	10.8	44
508	Single-Molecule Analysis of MicroRNA and Logic Operations Using a Smart Plasmonic Nanobiosensor. <i>Journal of the American Chemical Society</i> , 2018 , 140, 3988-3993	16.4	77
507	DNA Nanotechnology-Enabled Interfacial Engineering for Biosensor Development. <i>Annual Review of Analytical Chemistry</i> , 2018 , 11, 171-195	12.5	64
506	Valency-Controlled Framework Nucleic Acid Signal Amplifiers. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7131-7135	16.4	70
505	Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. <i>Nature Communications</i> , 2018 , 9, 1339	17.4	179
504	Valency-Controlled Framework Nucleic Acid Signal Amplifiers. <i>Angewandte Chemie</i> , 2018 , 130, 7249-725	53 .6	5
503	Synchrotron-Based Bioimaging in Cells and In vivo 2018 , 563-596		2
502	X-ray Microscopy for Nanoscale 3D Imaging of Biological Cells and Tissues 2018 , 757-766		
501	Synchrotron-Based X-ray Microscopy for Nanoscale Bioimaging 2018 , 767-784		
500	Synchrotron Radiation Experimental Techniques 2018 , 61-121		2
499	Synchrotron Soft X-ray Absorption Spectroscopy Study of Carbon and Silicon Nanostructures for Energy Applications 2018 , 275-319		1

(2018-2018)

498	Reactivating Catalytic Surface: Insights into the Role of Hot Holes in Plasmonic Catalysis. <i>Small</i> , 2018 , 14, e1703510	11	29
497	Imaging of Colorectal Cancers Using Activatable Nanoprobes with Second Near-Infrared Window Emission. <i>Angewandte Chemie</i> , 2018 , 130, 3688-3692	3.6	44
496	Imaging of Colorectal Cancers Using Activatable Nanoprobes with Second Near-Infrared Window Emission. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3626-3630	16.4	192
495	Nanoscale delivery systems for cancer immunotherapy. <i>Materials Horizons</i> , 2018 , 5, 344-362	14.4	43
494	DNA Nanostructure-Based Systems for Intelligent Delivery of Therapeutic Oligonucleotides. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701153	10.1	35
493	Identifying the Genotypes of Hepatitis B Virus (HBV) with DNA Origami Label. <i>Small</i> , 2018 , 14, 1701718	11	17
492	Protein-mimicking nanoparticle (Protmin)-based nanosensor for intracellular analysis of metal ions. <i>Nuclear Science and Techniques/Hewuli</i> , 2018 , 29, 1	2.1	7
491	Multiple Amplified Electrochemical Detection of MicroRNA-21 Using Hierarchical Flower-like Gold Nanostructures Combined with Gold-enriched Hybridization Chain Reaction. <i>Electroanalysis</i> , 2018 , 30, 1349-1356	3	17
490	Targeted Imaging of Brain Tumors with a Framework Nucleic Acid Probe. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 3414-3420	9.5	50
489	Framework-Nucleic-Acid-Enabled Biosensor Development. ACS Sensors, 2018, 3, 903-919	9.2	79
488	Visualizing glioma margins by real-time tracking of Eglutamyltranspeptidase activity. <i>Biomaterials</i> , 2018 , 173, 1-10	15.6	32
487	Charge Neutralization Drives the Shape Reconfiguration of DNA Nanotubes. <i>Angewandte Chemie</i> , 2018 , 130, 5516-5520	3.6	6
486	Charge Neutralization Drives the Shape Reconfiguration of DNA Nanotubes. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5418-5422	16.4	17
485	In Situ Spatial Complementation of Aptamer-Mediated Recognition Enables Live-Cell Imaging of Native RNA Transcripts in Real Time. <i>Angewandte Chemie</i> , 2018 , 130, 984-988	3.6	14
484	Recent advances in two-dimensional nanomaterials-based electrochemical sensors for environmental analysis. <i>Green Energy and Environment</i> , 2018 , 3, 97-106	5.7	55
483	In Situ Spatial Complementation of Aptamer-Mediated Recognition Enables Live-Cell Imaging of Native RNA Transcripts in Real Time. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 972-976	16.4	48
482	Highly Sensitive Diagnosis of Small Hepatocellular Carcinoma Using pH-Responsive Iron Oxide Nanocluster Assemblies. <i>Journal of the American Chemical Society</i> , 2018 , 140, 10071-10074	16.4	122
481	DNA Nanotweezers and Graphene Transistor Enable Label-Free Genotyping. <i>Advanced Materials</i> , 2018 , 30, e1802440	24	44

480	Programming DNA origami assembly for shape-resolved nanomechanical imaging labels. <i>Nature Protocols</i> , 2018 , 13, 1569-1585	18.8	17
479	Complex silica composite nanomaterials templated with DNA origami. <i>Nature</i> , 2018 , 559, 593-598	50.4	233
478	Necessary Experimental Conditions for Single-Shot Diffraction Imaging of DNA-Based Structures with X-ray Free-Electron Lasers. <i>ACS Nano</i> , 2018 , 12, 7509-7518	16.7	18
477	Tuning the Intrinsic Nanotoxicity in Advanced Therapeutics. <i>Advanced Therapeutics</i> , 2018 , 1, 1800059	4.9	8
476	Semiconducting Polymer Nanocavities: Porogenic Synthesis, Tunable Host-Guest Interactions, and Enhanced Drug/siRNA Delivery. <i>Small</i> , 2018 , 14, e1800239	11	25
475	Innentitelbild: Valency-Controlled Framework Nucleic Acid Signal Amplifiers (Angew. Chem. 24/2018). <i>Angewandte Chemie</i> , 2018 , 130, 7066-7066	3.6	
474	Inhibiting Methicillin-Resistant Staphylococcus aureus by Tetrahedral DNA Nanostructure-Enabled Antisense Peptide Nucleic Acid Delivery. <i>Nano Letters</i> , 2018 , 18, 5652-5659	11.5	82
473	Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA. <i>ACS Nano</i> , 2018 , 12, 7093-7099	16.7	47
472	Guiding protein delivery into live cells using DNA-programmed membrane fusion. <i>Chemical Science</i> , 2018 , 9, 5967-5975	9.4	39
471	Angiopep-2-conjugated Ag2S Quantum Dot for NIR-II Imaging of Brain Tumors. <i>Acta Chimica Sinica</i> , 2018 , 76, 393	3.3	5
470	Epitope Binning Assay Using an Electron Transfer-Modulated Aptamer Sensor. <i>ACS Applied Materials & Empty Interfaces</i> , 2018 , 10, 341-349	9.5	11
469	Effective immobilization of Au nanoparticles on TiO loaded graphene for a novel sandwich-type immunosensor. <i>Biosensors and Bioelectronics</i> , 2018 , 102, 301-306	11.8	43
468	Deciphering active biocompatibility of iron oxide nanoparticles from their intrinsic antagonism. <i>Nano Research</i> , 2018 , 11, 2746-2755	10	30
467	Effects of donor and acceptor's fluorescence lifetimes on the method of applying Fister resonance energy transfer in STED microscopy. <i>Journal of Microscopy</i> , 2018 , 269, 59-65	1.9	8
466	Single-Molecule Studies of Allosteric Inhibition of Individual Enzyme on a DNA Origami Reactor. Journal of Physical Chemistry Letters, 2018 , 9, 6786-6794	6.4	10
465	DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nature Biomedical Engineering, 2018, 2, 865-877	19	184
464	Concept and Development of Framework Nucleic Acids. <i>Journal of the American Chemical Society</i> , 2018 , 140, 17808-17819	16.4	124
463	Hydrogen Sulfide-Activatable Second Near-Infrared Fluorescent Nanoassemblies for Targeted Photothermal Cancer Therapy. <i>Nano Letters</i> , 2018 , 18, 6411-6416	11.5	115

(2017-2018)

462	Programming Niche Accessibility and In Vitro Stemness with Intercellular DNA Reactions. <i>Advanced Materials</i> , 2018 , 30, e1804861	24	18
461	Graphene oxide-silver nanocomposites modulate biofilm formation and extracellular polymeric substance (EPS) production. <i>Nanoscale</i> , 2018 , 10, 19603-19611	7.7	30
460	DNA Nanostructure-Programmed Like-Charge Attraction at the Cell-Membrane Interface. <i>ACS Central Science</i> , 2018 , 4, 1344-1351	16.8	102
459	Single-Cell Mobility Analysis of Metastatic Breast Cancer Cells. <i>Advanced Science</i> , 2018 , 5, 1801158	13.6	12
458	Nanodiamond autophagy inhibitor allosterically improves the arsenical-based therapy of solid tumors. <i>Nature Communications</i> , 2018 , 9, 4347	17.4	52
457	Combustion Fabrication of Nanoporous Graphene for Ionic Separation Membranes. <i>Advanced Functional Materials</i> , 2018 , 28, 1805026	15.6	49
456	Nanodiamond-based non-canonical autophagy inhibitor synergistically induces cell death in oxygen-deprived tumors. <i>Materials Horizons</i> , 2018 , 5, 1204-1210	14.4	18
455	Serum protein corona-responsive autophagy tuning in cells. <i>Nanoscale</i> , 2018 , 10, 18055-18063	7.7	19
454	Fluorescent biosensors enabled by graphene and graphene oxide. <i>Biosensors and Bioelectronics</i> , 2017 , 89, 96-106	11.8	155
453	Clamped Hybridization Chain Reactions for the Self-Assembly of Patterned DNA Hydrogels. <i>Angewandte Chemie</i> , 2017 , 129, 2203-2207	3.6	18
452	Clamped Hybridization Chain Reactions for the Self-Assembly of Patterned DNA Hydrogels. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 2171-2175	16.4	107
451	An Exonuclease III-Powered, On-Particle Stochastic DNA Walker. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1855-1858	16.4	248
450	Achieving Lower Insertion Loss and Higher Sensitivity in a SAW Biosensor via Optimization of Waveguide and Microcavity Structures. <i>IEEE Sensors Journal</i> , 2017 , 17, 1608-1616	4	13
449	Multicolor Gold-Silver Nano-Mushrooms as Ready-to-Use SERS Probes for Ultrasensitive and Multiplex DNA/miRNA Detection. <i>Analytical Chemistry</i> , 2017 , 89, 2531-2538	7.8	161
448	Stable Nanocomposite Based on PEGylated and Silver Nanoparticles Loaded Graphene Oxide for Long-Term Antibacterial Activity. <i>ACS Applied Materials & District Activity</i> , 9, 15328-15341	9.5	147
447	Gold nanoparticle-based low limit of detection Love wave biosensor for carcinoembryonic antigens. <i>Biosensors and Bioelectronics</i> , 2017 , 95, 48-54	11.8	45
446	Size-Dependent Regulation of Intracellular Trafficking of Polystyrene Nanoparticle-Based Drug-Delivery Systems. <i>ACS Applied Materials & Drug-Delivery Systems</i> . <i>ACS Applied Materials & Drug-Delivery Systems</i> .	9.5	59
445	Nanodiamonds Mediate Oral Delivery of Proteins for Stem Cell Activation and Intestinal Remodeling in Drosophila. <i>ACS Applied Materials & Delivery Stem Cell Activation and Intestinal Remodeling in Drosophila</i> .	9.5	15

444	The Inhibition Effect of Graphene Oxide Nanosheets on the Development of Streptococcus mutans Biofilms. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1700001	3.1	18
443	Graphene Nanoprobes for Real-Time Monitoring of Isothermal Nucleic Acid Amplification. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 15245-15253	9.5	20
442	DNA-Origami-Based Assembly of Anisotropic Plasmonic Gold Nanostructures. <i>Small</i> , 2017 , 13, 1603991	11	30
441	Precisely Tailored DNA Nanostructures and their Theranostic Applications. <i>Chemical Record</i> , 2017 , 17, 1213-1230	6.6	17
440	Single copy-sensitive electrochemical assay for circulating methylated DNA in clinical samples with ultrahigh specificity based on a sequential discrimination-amplification strategy. <i>Chemical Science</i> , 2017 , 8, 4764-4770	9.4	55
439	Synchrotron-based X-ray microscopy for sub-100nm resolution cell imaging. <i>Current Opinion in Chemical Biology</i> , 2017 , 39, 11-16	9.7	11
438	Real-Time Imaging of Endocytosis and Intracellular Trafficking of Semiconducting Polymer Dots. <i>ACS Applied Materials & Documents (Materials & Documents)</i> 21200-21208	9.5	27
437	Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. <i>Nature Communications</i> , 2017 , 8, 15646	17.4	116
436	Nuclease-free target recycling signal amplification for ultrasensitive multiplexing DNA biosensing. <i>Biosensors and Bioelectronics</i> , 2017 , 94, 605-608	11.8	9
435	An Exonuclease III-Powered, On-Particle Stochastic DNA Walker. <i>Angewandte Chemie</i> , 2017 , 129, 1881-	18864	31
434	Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS nanosheet. <i>Biosensors and Bioelectronics</i> , 2017 , 94, 552-559	11.8	130
433	DNA origami-based shape IDs for single-molecule nanomechanical genotyping. <i>Nature Communications</i> , 2017 , 8, 14738	17.4	62
432	Advances in DNA Nanostructure-Based Smart Drug Delivery Systems. <i>Nano LIFE</i> , 2017 , 07, 1730001	0.9	2
431	Facile Synthesis of a MoS-Prussian Blue Nanocube Nanohybrid-Based Electrochemical Sensing Platform for Hydrogen Peroxide and Carcinoembryonic Antigen Detection. <i>ACS Applied Materials & Materials (ACS Applied Materials Act Applied Materials Act Applied Materials Act Applied Materials (ACS Applied Materials Act Act Act Applied Materials Act Act Act Act Act Act Act Act Act Act</i>	9.5	86
430	Catalysis-Driven Self-Thermophoresis of Janus Plasmonic Nanomotors. <i>Angewandte Chemie</i> , 2017 , 129, 530-533	3.6	17
429	Catalysis-Driven Self-Thermophoresis of Janus Plasmonic Nanomotors. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 515-518	16.4	70
428	Expression and radiolabeling of Cas9 protein. Nuclear Science and Techniques/Hewuli, 2017, 28, 1	2.1	2
427	Valence-Engineering of Quantum Dots Using Programmable DNA Scaffolds. <i>Angewandte Chemie</i> , 2017 , 129, 16293-16297	3.6	6

426	Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. <i>Nature Chemistry</i> , 2017 , 9, 1056-1067	17.6	186
425	Organelle-Specific Triggered Release of Immunostimulatory Oligonucleotides from Intrinsically Coordinated DNA-Metal-Organic Frameworks with Soluble Exoskeleton. <i>Journal of the American Chemical Society</i> , 2017 , 139, 15784-15791	16.4	125
424	Branched Nanostructure for Dual-Model Imaging. <i>Nano LIFE</i> , 2017 , 07, 1750003	0.9	
423	Programming Enzyme-Initiated Autonomous DNAzyme Nanodevices in Living Cells. <i>ACS Nano</i> , 2017 , 11, 11908-11914	16.7	70
422	Valence-Engineering of Quantum Dots Using Programmable DNA Scaffolds. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16077-16081	16.4	41
421	Docking of Antibodies into the Cavities of DNA Origami Structures. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14423-14427	16.4	36
420	Docking of Antibodies into the Cavities of DNA Origami Structures. <i>Angewandte Chemie</i> , 2017 , 129, 146	135614	6 1/ 9
419	Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10176-10179	16.4	85
418	Humidity-Responsive Single-Nanoparticle-Layer Plasmonic Films. Advanced Materials, 2017, 29, 1606796	524	21
417	DNA Hydrogel with Aptamer-Toehold-Based Recognition, Cloaking, and Decloaking of Circulating Tumor Cells for Live Cell Analysis. <i>Nano Letters</i> , 2017 , 17, 5193-5198	11.5	144
416	Sub-diffraction-limit cell imaging using a super-resolution microscope with simplified pulse synchronization. <i>Science China Chemistry</i> , 2017 , 60, 1305-1309	7.9	12
415	Recognizing single phospholipid vesicle collisions on carbon fiber nanoelectrode. <i>Science China Chemistry</i> , 2017 , 60, 1474-1480	7.9	14
414	Enzyme-Triggered Fluorescence Turn-on: A Probe for Specifically Imaging Ovarian-Cancer-Related EGlutamyltranspeptidase. <i>Chinese Journal of Chemistry</i> , 2017 , 35, 1711-1716	4.9	8
413	Real-Time Imaging of Single-Molecule Enzyme Cascade Using a DNA Origami Raft. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17525-17532	16.4	69
412	DNA Nanostructure as Smart Carriers for Drug Delivery. <i>Methods in Molecular Biology</i> , 2017 , 1500, 121-	1324	3
411	Autophagy and lysosomal dysfunction: A new insight into mechanism of synergistic pulmonary toxicity of carbon black-metal ions co-exposure. <i>Carbon</i> , 2017 , 111, 322-333	10.4	25
410	Nanodiamonds Interfere with Wnt-Regulated Cell Migration and Adipocyte Differentiation in Cells and Embryonic Development In Vivo. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1600208	3.1	4
409	Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity. <i>Sensors</i> , 2017 , 17,	3.8	7

408	Nanoplasmonic Biological Sensing and Imaging. <i>Acta Chimica Sinica</i> , 2017 , 75, 1036	3.3	24
407	DNA nanotechnology-enabled biosensors. <i>Biosensors and Bioelectronics</i> , 2016 , 76, 68-79	11.8	118
406	Sodium alginate-functionalized nanodiamonds as sustained chemotherapeutic drug-release vectors. <i>Carbon</i> , 2016 , 97, 78-86	10.4	38
405	Iterative and accurate determination of small angle X-ray scattering background. <i>Nuclear Science and Techniques/Hewuli</i> , 2016 , 27, 1	2.1	О
404	Antisuperbug Cotton Fabric with Excellent Laundering Durability. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 19866-71	9.5	38
403	Deciphering buried air phases on natural and bioinspired superhydrophobic surfaces using synchrotron radiation-based X-ray phase-contrast imaging. <i>NPG Asia Materials</i> , 2016 , 8, e306-e306	10.3	12
402	Dynamic Modulation of DNA Hybridization Using Allosteric DNA Tetrahedral Nanostructures. <i>Analytical Chemistry</i> , 2016 , 88, 8043-9	7.8	37
401	DNA reaction networks: Providing a panoramic view. <i>Nature Chemistry</i> , 2016 , 8, 738-40	17.6	2
400	Aptamer-initiated on-particle template-independent enzymatic polymerization (aptamer-OTEP) for electrochemical analysis of tumor biomarkers. <i>Biosensors and Bioelectronics</i> , 2016 , 86, 536-541	11.8	31
399	Quantum dots protect against MPP+-induced neurotoxicity in a cell model of Parkinson disease through autophagy induction. <i>Science China Chemistry</i> , 2016 , 59, 1486-1491	7.9	17
398	One-Shot Immunomodulatory Nanodiamond Agents for Cancer Immunotherapy. <i>Advanced Materials</i> , 2016 , 28, 2699-708	24	85
397	Zero-Background Helicase-Dependent Amplification and Its Application to Reliable Assay of Telomerase Activity in Cancer Cell by Eliminating Primer-Dimer Artifacts. <i>ChemBioChem</i> , 2016 , 17, 1171	-ફે. ⁸	12
396	Hierarchical three-dimensional branched hematite nanorod arrays with enhanced mid-visible light absorption for high-efficiency photoelectrochemical water splitting. <i>Nanoscale</i> , 2016 , 8, 12697-701	7.7	34
395	Ultrahigh precision low-cost pinpointed SiO2 patterns nanofabrication by using traditional MEMS fabrication processes. <i>Microsystem Technologies</i> , 2016 , 22, 2101-2107	1.7	1
394	Hetero-assembly of gold nanoparticles on a DNA origami template. <i>Science China Chemistry</i> , 2016 , 59, 730-734	7.9	23
393	Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. <i>Nature Protocols</i> , 2016 , 11, 1244-63	18.8	234
392	Nanostructure-based surface-enhanced Raman scattering biosensors for nucleic acids and proteins. Journal of Materials Chemistry B, 2016 , 4, 1757-1769	7.3	65
391	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). <i>Autophagy</i> , 2016 , 12, 1-222	10.2	3838

(2016-2016)

390	Multiple-Armed Tetrahedral DNA Nanostructures for Tumor-Targeting, Dual-Modality in Vivo Imaging. <i>ACS Applied Materials & Discours (Materials & Materials & Mater</i>	9.5	110
389	High-Sensitivity and High-Efficiency Detection of DNA Hydroxymethylation in Genomic DNA by Multiplexing Electrochemical Biosensing. <i>Analytical Chemistry</i> , 2016 , 88, 3476-80	7.8	34
388	Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging. <i>Nanoscale</i> , 2016 , 8, 2090-6	7.7	61
387	DNA orientation-specific adhesion and patterning of living mammalian cells on self-assembled DNA monolayers. <i>Chemical Science</i> , 2016 , 7, 2722-2727	9.4	26
386	Nitidine chloride-assisted bio-functionalization of reduced graphene oxide by bovine serum albumin for impedimetric immunosensing. <i>Biosensors and Bioelectronics</i> , 2016 , 79, 536-42	11.8	27
385	Uniform Au@Pt core-shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction. <i>Nanoscale</i> , 2016 , 8, 602-8	7.7	77
384	Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate. <i>Science China Chemistry</i> , 2016 , 59, 237-242	7.9	64
383	Activity modulation and allosteric control of a scaffolded DNAzyme using a dynamic DNA nanostructure. <i>Chemical Science</i> , 2016 , 7, 1200-1204	9.4	49
382	RCA-Assisted Self-assembled DNA Origami Nano-constructs as Vehicles for Cellular Delivery of Diagnostic Probes and Therapeutic Drugs 2016 , 151-159		2
381	X-ray and optical characterizations of DNA-mediated Janus nanostructures. <i>Applied Physics Letters</i> , 2016 , 109, 233101	3.4	1
380	Silica Nanoparticles Target a Wnt Signal Transducer for Degradation and Impair Embryonic Development in Zebrafish. <i>Theranostics</i> , 2016 , 6, 1810-20	12.1	23
379	Synthesis, Antiphospholipase A∏Antiprotease, Antibacterial Evaluation and Molecular Docking Analysis of Certain Novel Hydrazones. <i>Molecules</i> , 2016 , 21,	4.8	7
378	On-Electrode Synthesis of Shape-Controlled Hierarchical Flower-Like Gold Nanostructures for Efficient Interfacial DNA Assembly and Sensitive Electrochemical Sensing of MicroRNA. <i>Small</i> , 2016 , 12, 3794-801	11	81
377	Transfer of Two-Dimensional Oligonucleotide Patterns onto Stereocontrolled Plasmonic Nanostructures through DNA-Origami-Based Nanoimprinting Lithography. <i>Angewandte Chemie</i> , 2016 , 128, 8168-8172	3.6	13
376	Transfer of Two-Dimensional Oligonucleotide Patterns onto Stereocontrolled Plasmonic Nanostructures through DNA-Origami-Based Nanoimprinting Lithography. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8036-40	16.4	60
375	Dietary Iron Oxide Nanoparticles Delay Aging and Ameliorate Neurodegeneration in Drosophila. <i>Advanced Materials</i> , 2016 , 28, 1387-93	24	132
374	A Surface-Confined Proton-Driven DNA Pump Using a Dynamic 3D DNA Scaffold. <i>Advanced Materials</i> , 2016 , 28, 6860-5	24	70
373	Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain. <i>Scientific Reports</i> , 2016 , 6, 19714	4.9	37

372	Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser. <i>Scientific Reports</i> , 2016 , 6, 34008	4.9	16
371	Structural and optical control of DNA-mediated Janus plasmonic nanostructures. <i>Nanoscale</i> , 2016 , 8, 9337-42	7.7	6
370	Dual-Target Electrochemical Biosensing Based on DNA Structural Switching on Gold Nanoparticle-Decorated MoS2 Nanosheets. <i>ACS Applied Materials & Decorated MoS2 Nanosheets</i> . <i>ACS Applied Materials & Decorated MoS2 Nanosheets</i> .	9.5	128
369	Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy. <i>Nanoscale</i> , 2016 , 8, 5842-6	7.7	10
368	PolyA-Mediated DNA Assembly on Gold Nanoparticles for Thermodynamically Favorable and Rapid Hybridization Analysis. <i>Analytical Chemistry</i> , 2016 , 88, 4949-54	7.8	90
367	Portable detection of clenbuterol using a smartphone-based electrochemical biosensor with electric field-driven acceleration. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 781, 339-344	4.1	43
366	Ion-Mediated Polymerase Chain Reactions Performed with an Electronically Driven Microfluidic Device. <i>Angewandte Chemie</i> , 2016 , 128, 12638-12642	3.6	6
365	Ion-Mediated Polymerase Chain Reactions Performed with an Electronically Driven Microfluidic Device. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12450-4	16.4	11
364	Improving performance of MoS2-based electrochemical sensors by decorating noble metallic nanoparticles on the surface of MoS2 nanosheet. <i>RSC Advances</i> , 2016 , 6, 76614-76620	3.7	31
363	Superresolution imaging of telomeres with continuous wave stimulated emission depletion (STED) microscope. <i>Science China Chemistry</i> , 2016 , 59, 1519-1524	7.9	22
362	Growth and origami folding of DNA on nanoparticles for high-efficiency molecular transport in cellular imaging and drug delivery. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2431-5	16.4	93
361	Gold-Nanoparticle-Mediated Jigsaw-Puzzle-like Assembly of Supersized Plasmonic DNA Origami. <i>Angewandte Chemie</i> , 2015 , 127, 3009-3012	3.6	15
360	A MoSEbased system for efficient immobilization of hemoglobin and biosensing applications. <i>Nanotechnology</i> , 2015 , 26, 274005	3.4	55
359	Universal Fluorescence Biosensor Platform Based on Graphene Quantum Dots and Pyrene-Functionalized Molecular Beacons for Detection of MicroRNAs. <i>ACS Applied Materials & Interfaces</i> , 2015 , 7, 16152-6	9.5	102
358	DNA-based plasmonic nanostructures. <i>Materials Today</i> , 2015 , 18, 326-335	21.8	57
357	Electrochemical Sensors Using Two-Dimensional Layered Nanomaterials. <i>Electroanalysis</i> , 2015 , 27, 106	2- 3 072	36
356	Cotranscriptionally folded RNA nanostructures pave the way to intracellular nanofabrication. <i>ChemBioChem</i> , 2015 , 16, 39-41	3.8	4
355	Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting. <i>Advanced Science</i> , 2015 , 2, 1500005	13.6	31

(2015-2015)

354	Electrochemical DNA Biosensor Based on a Tetrahedral Nanostructure Probe for the Detection of Avian Influenza A (H7N9) Virus. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 8834-42	9.5	138
353	Coordination-mediated programmable assembly of unmodified oligonucleotides on plasmonic silver nanoparticles. <i>ACS Applied Materials & mp; Interfaces</i> , 2015 , 7, 11047-52	9.5	29
352	Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity. <i>Particle and Fibre Toxicology</i> , 2015 , 12, 2	8.4	33
351	A photoelectrochemical sensing strategy for biomolecular detection. <i>Science China Chemistry</i> , 2015 , 58, 834-834	7.9	14
350	Rare Earth core/shell nanobarcodes for multiplexed trace biodetection. <i>Analytical Chemistry</i> , 2015 , 87, 5745-52	7.8	13
349	Clicking DNA to gold nanoparticles: poly-adenine-mediated formation of monovalent DNA-gold nanoparticle conjugates with nearly quantitative yield. <i>NPG Asia Materials</i> , 2015 , 7, e159-e159	10.3	91
348	DNA-directed assembly of gold nanohalo for quantitative plasmonic imaging of single-particle catalysis. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4292-5	16.4	111
347	Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon-nanowire-array integrated with magnetic upconversion nanoprobes. <i>Biomaterials</i> , 2015 , 54, 55-6	52 ^{15.6}	89
346	Graphene oxide-assisted nucleic acids assays using conjugated polyelectrolytes-based fluorescent signal transduction. <i>Analytical Chemistry</i> , 2015 , 87, 3877-83	7.8	44
345	Improved resolution in fluorescence microscopy with the FRET pairs by time gating. <i>Optics Express</i> , 2015 , 23, 13121-9	3.3	2
344	Integration of Switchable DNA-Based Hydrogels with Surfaces by the Hybridization Chain Reaction. <i>Nano Letters</i> , 2015 , 15, 7773-8	11.5	115
343	Graphene-based nanoprobes for molecular diagnostics. <i>Analyst, The</i> , 2015 , 140, 6439-51	5	7
342	Mismatch extension of DNA polymerases and high-accuracy single nucleotide polymorphism diagnostics by gold nanoparticle-improved isothermal amplification. <i>Analytical Chemistry</i> , 2015 , 87, 87	18-23	41
341	Inhibitory impact of 3'-terminal 2'-O-methylated small silencing RNA on target-primed polymerization and unbiased amplified quantification of the RNA in Arabidopsis thaliana. <i>Analytical Chemistry</i> , 2015 , 87, 8758-64	7.8	24
340	Shape-controlled gold nanoparticles supported on MoShanosheets: synergistic effect of thionine and MoShand their application for electrochemical label-free immunosensing. <i>Nanoscale</i> , 2015 , 7, 19129	9-33	93
339	Ultrasensitive Detection of Dual Cancer Biomarkers with Integrated CMOS-Compatible Nanowire Arrays. <i>Analytical Chemistry</i> , 2015 , 87, 11203-8	7.8	50
338	Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes. <i>Nanoscale</i> , 2015 , 7, 18671-6	7.7	29
337	Elaborately designed diblock nanoprobes for simultaneous multicolor detection of microRNAs. Nanoscale, 2015 , 7, 15822-9	7.7	32

336	Nanoplasmonic imaging of latent fingerprints with explosive RDX residues. <i>Analytical Chemistry</i> , 2015 , 87, 9403-7	7.8	40
335	Transportation and fate of gold nanoparticles in oilseed rape. <i>RSC Advances</i> , 2015 , 5, 73827-73833	3.7	2
334	Isothermal Amplification of Nucleic Acids. <i>Chemical Reviews</i> , 2015 , 115, 12491-545	68.1	865
333	Constructing Higher-Order DNA Nanoarchitectures with Highly Purified DNA Nanocages. <i>ACS Applied Materials & DNA Nanocages</i> , 2015 , 7, 13174-9	9.5	29
332	Fluorescent In Situ Targeting Probes for Rapid Imaging of Ovarian-Cancer-Specific EGlutamyltranspeptidase. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 7349-53	16.4	155
331	Fluorescent In Situ Targeting Probes for Rapid Imaging of Ovarian-Cancer-Specific EGlutamyltranspeptidase. <i>Angewandte Chemie</i> , 2015 , 127, 7457-7461	3.6	23
330	Programmable Engineering of a Biosensing Interface with Tetrahedral DNA Nanostructures for Ultrasensitive DNA Detection. <i>Angewandte Chemie</i> , 2015 , 127, 2179-2183	3.6	39
329	Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting. <i>ACS Applied Materials & Acs Applied & Acs App</i>	9.5	38
328	A DNA-based system for selecting and displaying the combined result of two input variables. <i>Nature Communications</i> , 2015 , 6, 10089	17.4	40
327	Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2151-5	16.4	264
326	Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification. <i>Nano Research</i> , 2015 , 8, 731-742	10	60
325	Monodispersed nanoparticles of conjugated polyelectrolyte brush with high charge density for rapid, specific and label-free detection of tumor marker. <i>Analyst, The</i> , 2015 , 140, 1842-6	5	5
324	Analysis of telomerase activity based on a spired DNA tetrahedron TS primer. <i>Biosensors and Bioelectronics</i> , 2015 , 67, 364-9	11.8	38
323	Unraveling the role of hydrogen peroxide in Bynuclein aggregation using an ultrasensitive nanoplasmonic probe. <i>Analytical Chemistry</i> , 2015 , 87, 1968-73	7.8	31
322	Growth and Origami Folding of DNA on Nanoparticles for High-Efficiency Molecular Transport in Cellular Imaging and Drug Delivery. <i>Angewandte Chemie</i> , 2015 , 127, 2461-2465	3.6	23
321	Gold-nanoparticle-mediated jigsaw-puzzle-like assembly of supersized plasmonic DNA origami. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2966-9	16.4	88
320	Culture medium-associated physicochemical insights on the cytotoxicity of carbon nanomaterials. <i>Chemical Research in Toxicology</i> , 2015 , 28, 290-5	4	15
319	A highly sensitive chemiluminescence sensor for detecting mercury (II) ions: a combination of Exonuclease III-aided signal amplification and graphene oxide-assisted background reduction. <i>Science China Chemistry</i> , 2015 , 58, 514-518	7.9	57

(2014-2015)

318	Fabrication of nanometer-sized gold flower microelectrodes for electrochemical biosensing applications. <i>Scientia Sinica Chimica</i> , 2015 , 45, 1214-1219	1.6	3
317	Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations. <i>Scientific Reports</i> , 2014 , 4, 5920	4.9	55
316	Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. <i>Mikrochimica Acta</i> , 2014 , 181, 1497-1503	5.8	134
315	Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2014 , 10, 515-24	6	30
314	Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. <i>Accounts of Chemical Research</i> , 2014 , 47, 612-23	24.3	382
313	Long-term effects of nanoparticles on nutrition and metabolism. <i>Small</i> , 2014 , 10, 3603-11	11	44
312	Functional nanoprobes for ultrasensitive detection of biomolecules: an update. <i>Chemical Society Reviews</i> , 2014 , 43, 1601-11	58.5	166
311	Nanoscale optical probes for cellular imaging. <i>Chemical Society Reviews</i> , 2014 , 43, 2650-61	58.5	166
310	Rational design of pH-controlled DNA strand displacement. <i>Journal of the American Chemical Society</i> , 2014 , 136, 16469-72	16.4	85
309	FRET lasing from self-assembled DNA tetrahedral nanostructures suspended in optofluidic droplet resonators. <i>European Physical Journal: Special Topics</i> , 2014 , 223, 2057-2062	2.3	5
308	Ultrasensitive electrochemical detection of prostate-specific antigen by using antibodies anchored on a DNA nanostructural scaffold. <i>Analytical Chemistry</i> , 2014 , 86, 7337-42	7.8	131
307	DNA nanostructure-based universal microarray platform for high-efficiency multiplex bioanalysis in biofluids. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 17944-53	9.5	91
306	Gold nanostructures encoded by non-fluorescent small molecules in polyA-mediated nanogaps as universal SERS nanotags for recognizing various bioactive molecules. <i>Chemical Science</i> , 2014 , 5, 4460-44	186 ⁴	104
305	DNA-gold nanoparticle conjugates-based nanoplasmonic probe for specific differentiation of cell types. <i>Analytical Chemistry</i> , 2014 , 86, 3227-31	7.8	52
304	Metal ion-mediated assembly of DNA nanostructures for cascade fluorescence resonance energy transfer-based fingerprint analysis. <i>Analytical Chemistry</i> , 2014 , 86, 7084-7	7.8	28
303	Creating SERS hot spots on MoS(2) nanosheets with in situ grown gold nanoparticles. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 18735-41	9.5	185
302	Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. <i>RSC Advances</i> , 2014 , 4, 27625	3.7	180
301	Self-assembly of DNA Origami Using Rolling Circle Amplification Based DNA Nanoribbons. <i>Chinese Journal of Chemistry</i> , 2014 , 32, 137-141	4.9	13

300	Dynamic and quantitative control of the DNA-mediated growth of gold plasmonic nanostructures. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8338-42	16.4	58
299	Ultrasensitive IgG quantification using DNA nano-pyramids. NPG Asia Materials, 2014 , 6, e112-e112	10.3	52
298	Target-triggered three-way junction structure and polymerase/nicking enzyme synergetic isothermal quadratic DNA machine for highly specific, one-step, and rapid microRNA detection at attomolar level. <i>Analytical Chemistry</i> , 2014 , 86, 8098-105	7.8	92
297	Functional DNA nanostructures for theranostic applications. <i>Accounts of Chemical Research</i> , 2014 , 47, 550-9	24.3	306
296	Molecular logic gates on DNA origami nanostructures for microRNA diagnostics. <i>Analytical Chemistry</i> , 2014 , 86, 1932-6	7.8	106
295	Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible nand p-type silicon nanowire sensor arrays. <i>Nanoscale</i> , 2014 , 6, 13036-42	7.7	44
294	An improved DNA force field for ssDNA interactions with gold nanoparticles. <i>Journal of Chemical Physics</i> , 2014 , 140, 234102	3.9	10
293	Dark-field microscopy in imaging of plasmon resonant nanoparticles. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 124, 111-7	6	34
292	Multivalent capture and detection of cancer cells with DNA nanostructured biosensors and multibranched hybridization chain reaction amplification. <i>Analytical Chemistry</i> , 2014 , 86, 7843-8	7.8	128
291	Template-free synthesis of hematite photoanodes with nanostructured ATO conductive underlayer for PEC water splitting. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 36-40	9.5	30
290	Nanoprobes for super-resolution fluorescence imaging at the nanoscale. <i>Science China Chemistry</i> , 2014 , 57, 100-106	7.9	24
289	Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. <i>Analytical Chemistry</i> , 2014 , 86, 2124-30	7.8	392
288	Size-dependent programming of the dynamic range of graphene oxide-DNA interaction-based ion sensors. <i>Analytical Chemistry</i> , 2014 , 86, 4047-51	7.8	59
287	Target-responsive, DNA nanostructure-based E-DNA sensor for microRNA analysis. <i>Analytical Chemistry</i> , 2014 , 86, 2285-8	7.8	112
286	CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing. <i>Small</i> , 2014 , 10, 2022-8	11	79
285	Ultrasensitive electrochemical DNA sensor based on the target induced structural switching and surface-initiated enzymatic polymerization. <i>Biosensors and Bioelectronics</i> , 2014 , 55, 231-6	11.8	26
284	A methylation-blocked cascade amplification strategy for label-free colorimetric detection of DNA methyltransferase activity. <i>Biosensors and Bioelectronics</i> , 2014 , 54, 565-70	11.8	63
283	Structural DNA nanotechnology for intelligent drug delivery. Small, 2014 , 10, 4626-35	11	85

282	Visible Light Driven Photoelectrochemical Water Oxidation by Zn- and Ti-Doped Hematite Nanostructures. <i>ACS Catalysis</i> , 2014 , 4, 2006-2015	13.1	150
281	DNA-conjugated quantum dot nanoprobe for high-sensitivity fluorescent detection of DNA and micro-RNA. <i>ACS Applied Materials & Description</i> (2014), 6, 1152-7	9.5	124
280	Electrochemical switching with 3D DNA tetrahedral nanostructures self-assembled at gold electrodes. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 8928-31	9.5	69
279	Quadratic isothermal amplification for the detection of microRNA. <i>Nature Protocols</i> , 2014 , 9, 597-607	18.8	47
278	Physical and biochemical insights on DNA structures in artificial and living systems. <i>Accounts of Chemical Research</i> , 2014 , 47, 1720-30	24.3	54
277	Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection. <i>International Journal of Nanomedicine</i> , 2014 , 9, 4697-707	7.3	74
276	Polymerase/nicking enzyme synergetic isothermal quadratic DNA machine and its application for one-step amplified biosensing of lead (II) ions at femtomole level and DNA methyltransferase. <i>NPG Asia Materials</i> , 2014 , 6, e131-e131	10.3	33
275	Synchrotron-based X-ray-sensitive nanoprobes for cellular imaging. <i>Advanced Materials</i> , 2014 , 26, 7889-	-9 <u>-5</u> 4	11
274	Autophagy-sensitized cytotoxicity of quantum dots in PC12 cells. <i>Advanced Healthcare Materials</i> , 2014 , 3, 354-9	10.1	42
273	Novel rolling circle amplification and DNA origami-based DNA belt-involved signal amplification assay for highly sensitive detection of prostate-specific antigen (PSA). <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 20372-7	9.5	31
272	Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7745-50	16.4	326
271	Single-Particle Tracking and Modulation of Cell Entry Pathways of a Tetrahedral DNA Nanostructure in Live Cells. <i>Angewandte Chemie</i> , 2014 , 126, 7879-7884	3.6	31
270	A bubble-mediated intelligent microscale electrochemical device for single-step quantitative bioassays. <i>Advanced Materials</i> , 2014 , 26, 4671-6	24	87
269	Titelbild: Single-Particle Tracking and Modulation of Cell Entry Pathways of a Tetrahedral DNA Nanostructure in Live Cells (Angew. Chem. 30/2014). <i>Angewandte Chemie</i> , 2014 , 126, 7809-7809	3.6	1
268	Tryptamine functionalized reduced graphene oxide for label-free DNA impedimetric biosensing. <i>Biosensors and Bioelectronics</i> , 2014 , 60, 161-6	11.8	29
267	Self-assembly of DNA-based drug delivery nanocarriers with rolling circle amplification. <i>Methods</i> , 2014 , 67, 198-204	4.6	23
266	Self-assembly of poly-adenine-tailed CpG oligonucleotide-gold nanoparticle nanoconjugates with immunostimulatory activity. <i>Small</i> , 2014 , 10, 368-75	11	79
265	Research progress and applications of self-assembled DNA nanostructures. <i>Chinese Science Bulletin</i> , 2014 , 59, 146-157	2.9	2

264	Progress in biological safety of graphene. Chinese Science Bulletin, 2014, 59, 1927-1936	2.9	2
263	Lab in a tube: ultrasensitive detection of microRNAs at the single-cell level and in breast cancer patients using quadratic isothermal amplification. <i>Journal of the American Chemical Society</i> , 2013 , 135, 4604-7	16.4	284
262	Graphene-based nanoprobes and a prototype optical biosensing platform. <i>Biosensors and Bioelectronics</i> , 2013 , 50, 251-5	11.8	33
261	Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors. <i>Methods</i> , 2013 , 63, 212-8	4.6	21
260	Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. <i>NPG Asia Materials</i> , 2013 , 5, e44-e44	10.3	102
259	Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control. <i>Lab on A Chip</i> , 2013 , 13, 3351-4	7.2	46
258	Programmed self-assembly of DNA origami nanoblocks into anisotropic higher-order nanopatterns. <i>Science Bulletin</i> , 2013 , 58, 2646-2650		7
257	A graphene oxide-based fluorescent biosensor for the analysis of peptide-receptor interactions and imaging in somatostatin receptor subtype 2 overexpressed tumor cells. <i>Analytical Chemistry</i> , 2013 , 85, 7732-7	7.8	63
256	Single-nucleotide polymorphism genotyping using a novel multiplexed electrochemical biosensor with nonfouling surface. <i>Biosensors and Bioelectronics</i> , 2013 , 42, 516-21	11.8	26
255	DNA Detection: A Molecular Beacon-Based Signal-Off Surface-Enhanced Raman Scattering Strategy for Highly Sensitive, Reproducible, and Multiplexed DNA Detection (Small 15/2013). <i>Small</i> , 2013 , 9, 265	2 ⁻¹ 2652	2 2
254	Development of electrochemical immunosensors towards point of care diagnostics. <i>Biosensors and Bioelectronics</i> , 2013 , 47, 1-11	11.8	175
253	DNA nanostructure-based ultrasensitive electrochemical microRNA biosensor. <i>Methods</i> , 2013 , 64, 276-8	3 4 .6	51
252	Nanoplasmonic Imaging of Latent Fingerprints and Identification of Cocaine. <i>Angewandte Chemie</i> , 2013 , 125, 11756-11759	3.6	29
251	Nanoplasmonic imaging of latent fingerprints and identification of cocaine. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 11542-5	16.4	127
250	Highly sensitive fluorescence assay of DNA methyltransferase activity via methylation-sensitive cleavage coupled with nicking enzyme-assisted signal amplification. <i>Biosensors and Bioelectronics</i> , 2013 , 42, 56-61	11.8	75
249	Synchrotron radiation X-ray fluorescence analysis of biodistribution and pulmonary toxicity of nanoscale titanium dioxide in mice. <i>Analyst, The</i> , 2013 , 138, 6511-6	5	15
248	Gold nanoparticle-assisted primer walking for closing the human chromosomal gap. <i>Analytical Methods</i> , 2013 , 5, 4746	3.2	
247	Dendrimer-folate-copper conjugates as bioprobes for synchrotron X-ray fluorescence imaging. <i>Chemical Communications</i> , 2013 , 49, 10388-90	5.8	7

(2013-2013)

246	A power-free microfluidic chip for SNP genotyping using graphene oxide and a DNA intercalating dye. <i>Chemical Communications</i> , 2013 , 49, 3125-7	5.8	50
245	Imaging cellular uptake and intracellular distribution of TiO2 nanoparticles. <i>Analytical Methods</i> , 2013 , 5, 6611	3.2	17
244	Highly sensitive detection of telomerase activity in tumor cells by cascade isothermal signal amplification based on three-way junction and base-stacking hybridization. <i>Biosensors and Bioelectronics</i> , 2013 , 41, 764-70	11.8	54
243	Design and applications of gold nanoparticle conjugates by exploiting biomolecule-gold nanoparticle interactions. <i>Nanoscale</i> , 2013 , 5, 2589-99	7.7	64
242	Highly sensitive recognition of Pb(2+) using Pb(2+) triggered exonuclease aided DNA recycling. <i>Biosensors and Bioelectronics</i> , 2013 , 47, 520-3	11.8	29
241	One-step highly sensitive florescence detection of T4 polynucleotide kinase activity and biological small molecules by ligation-nicking coupled reaction-mediated signal amplification. <i>Biosensors and Bioelectronics</i> , 2013 , 47, 218-24	11.8	38
240	RCA strands as scaffolds to create nanoscale shapes by a few staple strands. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2959-62	16.4	54
239	Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular uptake. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2013 , 5, 1761-7	9.5	143
238	Graphene oxide-based antibacterial cotton fabrics. Advanced Healthcare Materials, 2013, 2, 1259-66	10.1	173
237	A graphene-based platform for fluorescent detection of SNPs. <i>Analyst, The</i> , 2013 , 138, 2678-82	5	26
236	Pattern recognition analysis of proteins using DNA-decorated catalytic gold nanoparticles. <i>Small</i> , 2013 , 9, 2844-9	11	52
235	A Silicon Nanowire-Based Electrochemical Sensor with High Sensitivity and Electrocatalytic Activity. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 326-331	3.1	22
234	A molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed DNA detection. <i>Small</i> , 2013 , 9, 2493-9, 2652	11	79
233	Nucleic Acid Enzyme-Based DNA Nanomachine for Biosensing 2013 , 307-320		
232	Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs. <i>Small</i> , 2013 , 9, 3082-7	11	109
231	Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. <i>Journal of the American Chemical Society</i> , 2013 , 135, 5998-6001	16.4	874
230	In vivo behavior of near infrared-emitting quantum dots. <i>Biomaterials</i> , 2013 , 34, 4302-8	15.6	41
229	Smart drug delivery nanocarriers with self-assembled DNA nanostructures. <i>Advanced Materials</i> , 2013 , 25, 4386-96	24	313

228	Nanomaterial-Based Fluorescent DNA Analysis: A Comparative Study of the Quenching Effects of Graphene Oxide, Carbon Nanotubes, and Gold Nanoparticles. <i>Advanced Functional Materials</i> , 2013 , 23, 4140-4148	15.6	154
227	Scaffolded biosensors with designed DNA nanostructures. NPG Asia Materials, 2013, 5, e51-e51	10.3	94
226	Conjugation of dexamethasone to C60 for the design of an anti-inflammatory nanomedicine with reduced cellular apoptosis. <i>ACS Applied Materials & Design Section</i> , 1985, 1985, 1985, 1985, 2015,	9.5	18
225	Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. <i>Nature Nanotechnology</i> , 2013 , 8, 594-601	28.7	1008
224	Highly sensitive and selective detection of silver(I) in aqueous solution with silver(I)-specific DNA and Sybr Green I. <i>Analyst, The</i> , 2013 , 138, 2057-60	5	24
223	Carbon nanotubes multifunctionalized by rolling circle amplification and their application for highly sensitive detection of cancer markers. <i>Small</i> , 2013 , 9, 2595-601	11	40
222	A surface-initiated enzymatic polymerization strategy for electrochemical DNA sensors. <i>Biosensors and Bioelectronics</i> , 2013 , 41, 526-31	11.8	45
221	Molecular threading and tunable molecular recognition on DNA origami nanostructures. <i>Journal of the American Chemical Society</i> , 2013 , 135, 12172-5	16.4	51
220	Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors. Journal of the American Chemical Society, 2013 , 135, 696-702	16.4	213
219	Real time in vitro regulation of DNA methylation using a 5-fluorouracil conjugated DNA-based stimuli-responsive platform. <i>ACS Applied Materials & Description of Communication of Communication and State and</i>	9.5	5
218	A Highly Sensitive Amperometric Immunosensor for Clenbuterol Detection in Livestock Urine. <i>Electroanalysis</i> , 2013 , 25, 867-873	3	5
217	Bias controlled capacitive driven cantilever oscillation for high resolution dynamic force microscopy. <i>Applied Physics Letters</i> , 2013 , 102, 073110	3.4	7
216	A silicon-based electrochemical sensor for highly sensitive, specific, label-free and real-time DNA detection. <i>Nanotechnology</i> , 2013 , 24, 444012	3.4	3
215	Diagnosis of schistosomiasis japonica with interfacial co-assembly-based multi-channel electrochemical immunosensor arrays. <i>Scientific Reports</i> , 2013 , 3, 1789	4.9	24
214	Cytotoxicity of cadmium-based quantum dots. <i>Chinese Science Bulletin</i> , 2013 , 58, 1393-1402	2.9	3
213	DNA Origami Nanostructures 2013 , 207-224		1
212	The cytotoxicity of cadmium-based quantum dots. <i>Biomaterials</i> , 2012 , 33, 1238-44	15.6	543
211	Polyvalent immunostimulatory nanoagents with self-assembled CpG oligonucleotide-conjugated gold nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 1202-6	16.4	166

(2012-2012)

210	Akt signaling-associated metabolic effects of dietary gold nanoparticles in Drosophila. <i>Scientific Reports</i> , 2012 , 2, 563	4.9	47
209	Nano rolling-circle amplification for enhanced SERS hot spots in protein microarray analysis. <i>Analytical Chemistry</i> , 2012 , 84, 9139-45	7.8	54
208	The biocompatibility of nanodiamonds and their application in drug delivery systems. <i>Theranostics</i> , 2012 , 2, 302-12	12.1	274
207	Preparation of polymer decorated graphene oxide by Fray induced graft polymerization. <i>Nanoscale</i> , 2012 , 4, 1742-8	7.7	78
206	Genetic analysis with nanoPCR. Integrative Biology (United Kingdom), 2012, 4, 1155-63	3.7	16
205	Folding super-sized DNA origami with scaffold strands from long-range PCR. <i>Chemical Communications</i> , 2012 ,	5.8	93
204	Using stannous ion as an excellent inorganic ECL coreactant for tris(2,2'-bipyridyl) ruthenium(II). <i>Dalton Transactions</i> , 2012 , 41, 1630-4	4.3	9
203	Gold nanoparticles-based nanoconjugates for enhanced enzyme cascade and glucose sensing. <i>Analyst, The</i> , 2012 , 137, 4435-9	5	59
202	Charge transport within a three-dimensional DNA nanostructure framework. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13148-51	16.4	89
201	Silicon nanowire-based molecular beacons for high-sensitivity and sequence-specific DNA multiplexed analysis. <i>ACS Nano</i> , 2012 , 6, 2582-90	16.7	89
200	Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 2295-302	9.5	43
199	Reconfigurable Three-Dimensional DNA Nanostructures for the Construction of Intracellular Logic Sensors. <i>Angewandte Chemie</i> , 2012 , 124, 9154-9158	3.6	83
198	InnenrEktitelbild: Reconfigurable Three-Dimensional DNA Nanostructures for the Construction of Intracellular Logic Sensors (Angew. Chem. 36/2012). <i>Angewandte Chemie</i> , 2012 , 124, 9321-9321	3.6	O
197	Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9020-4	16.4	309
196	Nanoplasmonic detection of adenosine triphosphate by aptamer regulated self-catalytic growth of single gold nanoparticles. <i>Chemical Communications</i> , 2012 , 48, 9574-6	5.8	48
195	A graphene-based sensor array for high-precision and adaptive target identification with ensemble aptamers. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13843-9	16.4	196
194	Bioanalysis and Bioimaging with Fluorescent Conjugated Polymers and Conjugated Polymer Nanoparticles. <i>ACS Symposium Series</i> , 2012 , 81-117	0.4	2
193	Nanomaterial-Based Antibacterial Paper 2012 , 427-464		

192	Polyvalent DNA-graphene nanosheets "click" conjugates. <i>Nanoscale</i> , 2012 , 4, 394-9	7.7	32
191	Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. <i>Nano Letters</i> , 2012 , 12, 5262-8	11.5	158
190	High-selective removal of ultra-low level mercury ions from aqueous solution using oligothymonucleic acid functionalized polyethylene film. <i>Science China Chemistry</i> , 2012 , 55, 2202-2208	7.9	11
189	High-conductivity graphene nanocomposite via facile, covalent linkage of gold nanoparticles to graphene oxide. <i>Science Bulletin</i> , 2012 , 57, 3086-3092		8
188	DNAzyme-based rolling-circle amplification DNA machine for ultrasensitive analysis of microRNA in Drosophila larva. <i>Analytical Chemistry</i> , 2012 , 84, 7664-9	7.8	162
187	DNA Nanostructure-based Interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA. <i>Scientific Reports</i> , 2012 , 2, 867	4.9	161
186	Nanomechanical identification of proteins using microcantilever-based chemical sensors. <i>Nanoscale</i> , 2012 , 4, 6739-42	7.7	9
185	Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11876-9	16.4	367
184	Ultrasensitive and selective detection of nicotinamide adenine dinucleotide by target-triggered ligation-rolling circle amplification. <i>Chemical Communications</i> , 2012 , 48, 3354-6	5.8	35
183	Excessive sodium ions delivered into cells by nanodiamonds: implications for tumor therapy. <i>Small</i> , 2012 , 8, 1771-9	11	40
182	Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. <i>Analytical Chemistry</i> , 2012 , 84, 4622-7	7.8	169
181	Radiation induced reduction: an effective and clean route to synthesize functionalized graphene. Journal of Materials Chemistry, 2012 , 22, 7775		149
180	Polyvalent Immunostimulatory Nanoagents with Self-Assembled CpG Oligonucleotide-Conjugated Gold Nanoparticles. <i>Angewandte Chemie</i> , 2012 , 124, 1228-1232	3.6	17
179	Nanomaterials-based sensors for applications in environmental monitoring. <i>Journal of Materials Chemistry</i> , 2012 , 22, 18101		160
178	A portable and power-free microfluidic device for rapid and sensitive lead (Pb2+) detection. <i>Sensors</i> , 2012 , 12, 9467-75	3.8	33
177	Cytotoxicity of phenol red in toxicity assays for carbon nanoparticles. <i>International Journal of Molecular Sciences</i> , 2012 , 13, 12336-48	6.3	30
176	Optical Detection of Non-amplified Genomic DNA. Soft and Biological Matter, 2012, 153-183	0.8	2
175	Deoxyribonucleic Acid Molecular Design for Electrochemical Biosensors. <i>Chinese Journal of Analytical Chemistry</i> , 2011 , 39, 953-962	1.6	7

(2011-2011)

174	Detection of single-nucleotide polymorphism on uidA gene of Escherichia coli by a multiplexed electrochemical DNA biosensor with oligonucleotide-incorporated nonfouling surface. <i>Sensors</i> , 2011 , 11, 8018-27	3.8	10
173	Regenerable electrochemical immunological sensing at DNA nanostructure-decorated gold surfaces. <i>Chemical Communications</i> , 2011 , 47, 6254-6	5.8	90
172	Synthesis of polymer-protected graphene by solvent-assisted thermal reduction process. <i>Nanotechnology</i> , 2011 , 22, 345601	3.4	27
171	Nanotube-based colorimetric probe for ultrasensitive detection of ataxia telangiectasia mutated protein. <i>Analytical Chemistry</i> , 2011 , 83, 9191-6	7.8	49
170	Graphene-templated formation of two-dimensional lepidocrocite nanostructures for high-efficiency catalytic degradation of phenols. <i>Energy and Environmental Science</i> , 2011 , 4, 2035	35.4	74
169	Gold nanoparticles for high-throughput genotyping of long-range haplotypes. <i>Nature Nanotechnology</i> , 2011 , 6, 639-44	28.7	97
168	Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. <i>Nano Letters</i> , 2011 , 11, 3974-8	11.5	218
167	Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano, 2011 , 5, 3693-700	16.7	724
166	A graphene oxide-based nano-beacon for DNA phosphorylation analysis. <i>Chemical Communications</i> , 2011 , 47, 1201-3	5.8	94
165	Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. <i>ACS Nano</i> , 2011 , 5, 8783-9	16.7	555
164	Disposable Screen-Printed Electrode Coupled with Recombinant Drosophila melanogaster Acetylcholinesterase and Multiwalled Carbon Nanotubes for Rapid Detection of Pesticides. <i>Journal of AOAC INTERNATIONAL</i> , 2011 , 94, 307-312	1.7	10
163	A carbon nanotube-based high-sensitivity electrochemical immunosensor for rapid and portable detection of clenbuterol. <i>Biosensors and Bioelectronics</i> , 2011 , 28, 308-13	11.8	86
162	Carbon nanotube-based ultrasensitive multiplexing electrochemical immunosensor for cancer biomarkers. <i>Biosensors and Bioelectronics</i> , 2011 , 30, 93-9	11.8	127
161	DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors. <i>Analytical Chemistry</i> , 2011 , 83, 7418-23	7.8	211
160	A methylation-stimulated DNA machine: an autonomous isothermal route to methyltransferase activity and inhibition analysis. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 399, 3459-64	4.4	25
159	Electrochemical single nucleotide polymorphisms genotyping on surface immobilized three-dimensional branched DNA nanostructure. <i>Science China Chemistry</i> , 2011 , 54, 1273-1276	7.9	77
158	A graphene-conjugated oligomer hybrid probe for light-up sensing of lectin and Escherichia coli. <i>Advanced Materials</i> , 2011 , 23, 4386-91	24	132
157	Water-Dispersed Near-Infrared-Emitting Quantum Dots of Ultrasmall Sizes for In Vitro and In Vivo Imaging. <i>Angewandte Chemie</i> , 2011 , 123, 5813-5816	3.6	16

156	Catalytic Gold Nanoparticles for Nanoplasmonic Detection of DNA Hybridization. <i>Angewandte Chemie</i> , 2011 , 123, 12200-12204	3.6	48
155	Water-dispersed near-infrared-emitting quantum dots of ultrasmall sizes for in vitro and in vivo imaging. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5695-8	16.4	118
154	Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 11994-8	16.4	268
153	In situ monitoring of single molecule binding reactions with time-lapse atomic force microscopy on functionalized DNA origami. <i>Nanoscale</i> , 2011 , 3, 2481-4	7.7	18
152	Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range. <i>Chemical Communications</i> , 2011 , 47, 6278-80	5.8	155
151	. IEEE Sensors Journal, 2011 , 11, 2820-2824	4	6
150	Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. <i>Carbon</i> , 2011 , 49, 986-995	10.4	570
149	Universal optical assays based on multi-component nanoprobes for genomic deoxyribonucleic acid and proteins. <i>Analytica Chimica Acta</i> , 2011 , 702, 114-9	6.6	4
148	Ultra-photostable, non-cytotoxic, and highly fluorescent quantum nanospheres for long-term, high-specificity cell imaging. <i>Biomaterials</i> , 2011 , 32, 2133-40	15.6	29
147	In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots. <i>Biomaterials</i> , 2011 , 32, 5855-62	15.6	157
146	Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. <i>Nano Today</i> , 2011 , 6, 122-130	17.9	224
145	Nanomaterials-based Polymerase Chain Reactions for DNA Detection. <i>Current Organic Chemistry</i> , 2011 , 15, 486-497	1.7	12
144	Self-Assembly-Based Structural DNA Nanotechnology. <i>Current Organic Chemistry</i> , 2011 , 15, 534-547	1.7	2
143	AMPLIFIED BIOSENSING STRATEGIES FOR THE DETECTION OF BIOLOGICALLY RELATED MOLECULES WITH SILICA NANOPARTICLES AND CONJUGATED POLYELECTROLYTES. <i>Cosmos</i> , 2010 , 06, 207-219		
142	Digital microfluidic chip for rapid portable detection of mercury(II) 2010,		1
141	Gold nanoparticle-based sensing strategies for biomolecular detection. <i>Pure and Applied Chemistry</i> , 2010 , 82, 81-89	2.1	16
140	Target-responsive structural switching for nucleic acid-based sensors. <i>Accounts of Chemical Research</i> , 2010 , 43, 631-41	24.3	655
139	Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. <i>ACS Nano</i> , 2010 , 4, 488-94	16.7	219

(2010-2010)

138	A graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene oxide and a silver-specific oligonucleotide. <i>Chemical Communications</i> , 2010 , 46, 2596-8	5.8	432
137	An electrochemically actuated reversible DNA switch. <i>Nano Letters</i> , 2010 , 10, 1393-7	11.5	68
136	Multiplexed electrochemical DNA sensor for single-nucleotide polymorphism typing by using oligonucleotide-incorporated nonfouling surfaces. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 6703-6	3.4	20
135	Functional nanoprobes for ultrasensitive detection of biomolecules. <i>Chemical Society Reviews</i> , 2010 , 39, 4234-43	58.5	492
134	Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. <i>ACS Nano</i> , 2010 , 4, 7451-8	16.7	416
133	Saturated FEster resonance energy transfer microscopy with a stimulated emission depletion beam: a pathway toward single-molecule resolution in far-field bioimaging. <i>Optics Letters</i> , 2010 , 35, 386	2-4	10
132	A dumbbell probe-mediated rolling circle amplification strategy for highly sensitive microRNA detection. <i>Nucleic Acids Research</i> , 2010 , 38, e156	20.1	155
131	A quartz crystal microbalance-based molecular ruler for biopolymers. <i>Chemical Communications</i> , 2010 , 46, 949-51	5.8	24
130	Amplified fluorescent recognition of g-quadruplex folding with a cationic conjugated polymer and DNA intercalator. <i>ACS Applied Materials & Amp; Interfaces</i> , 2010 , 2, 3211-6	9.5	52
129	A silicon nanowire-based electrochemical glucose biosensor with high electrocatalytic activity and sensitivity. <i>Nanoscale</i> , 2010 , 2, 1704-7	7.7	39
128	DNA-bridged bioconjugation of fluorescent quantum dots for highly sensitive microfluidic protein chips. <i>Chemical Communications</i> , 2010 , 46, 6126-8	5.8	29
127	A graphene-enhanced molecular beacon for homogeneous DNA detection. <i>Nanoscale</i> , 2010 , 2, 1021-6	7.7	206
126	Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces. <i>Langmuir</i> , 2010 , 26, 1936-9	4	194
125	Graphene-based antibacterial paper. ACS Nano, 2010, 4, 4317-23	16.7	1540
124	Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification. <i>ChemPhysChem</i> , 2010 , 11, 585-9	3.2	180
123	Comparative Studies on Electrocatalytic Activities of Chemically Reduced Graphene Oxide and Electrochemically Reduced Graphene Oxide Noncovalently Functionalized with Poly(methylene blue). Electroanalysis, 2010, 22, 2862-2870	3	17
122	A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. <i>Advanced Functional Materials</i> , 2010 , 20, 453-459	15.6	1234
121	Gating of redox currents at gold nanoelectrodes via DNA hybridization. <i>Advanced Materials</i> , 2010 , 22, 2148-50	24	37

120	Asymmetric DNA origami for spatially addressable and index-free solution-phase DNA chips. <i>Advanced Materials</i> , 2010 , 22, 2672-5	24	60
119	Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. <i>Advanced Materials</i> , 2010 , 22, 5463-7	24	220
118	Laundering durability of superhydrophobic cotton fabric. <i>Advanced Materials</i> , 2010 , 22, 5473-7	24	243
117	A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. <i>Advanced Materials</i> , 2010 , 22, 4754-8	24	404
116	Direct Three-Dimensional Imaging of the Buried Interfaces between Water and Superhydrophobic Surfaces. <i>Angewandte Chemie</i> , 2010 , 122, 9331-9334	3.6	7
115	Direct three-dimensional imaging of the buried interfaces between water and superhydrophobic surfaces. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 9145-8	16.4	63
114	Silicon nanostructures for bioapplications. <i>Nano Today</i> , 2010 , 5, 282-295	17.9	227
113	The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. <i>Biomaterials</i> , 2010 , 31, 4829-34	15.6	233
112	Cellular uptake and cytotoxic evaluation of fullerenol in different cell lines. <i>Toxicology</i> , 2010 , 269, 155-9	9 4.4	42
111	A colorimetric strategy based on a water-soluble conjugated polymer for sensing pH-driven conformational conversion of DNA i-motif structure. <i>Biosensors and Bioelectronics</i> , 2010 , 25, 1838-42	11.8	21
110	Intracellular imaging with a graphene-based fluorescent probe. Small, 2010, 6, 1686-92	11	243
109	A DNA-Origami chip platform for label-free SNP genotyping using toehold-mediated strand displacement. <i>Small</i> , 2010 , 6, 1854-8	11	115
108	An on-nanoparticle rolling-circle amplification platform for ultrasensitive protein detection in biological fluids. <i>Small</i> , 2010 , 6, 2520-5	11	52
107	Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. <i>Small</i> , 2010 , 6, 201-4	11	205
106	A gold nanoparticle-based microfluidic protein chip for tumor markers. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 1194-7	1.3	11
105	Ultrastable, Highly Fluorescent, and Water-Dispersed Silicon-Based Nanospheres as Cellular Probes. <i>Angewandte Chemie</i> , 2009 , 121, 134-138	3.6	39
104	Inhibition of the in vitro replication of DNA by an aptamer-protein complex in an autonomous DNA machine. <i>Chemistry - A European Journal</i> , 2009 , 15, 11898-903	4.8	68
103	Gold-Nanoparticle-Based Multicolor Nanobeacons for Sequence-Specific DNA Analysis. <i>Angewandte Chemie</i> , 2009 , 121, 8826-8830	3.6	53

(2009-2009)

102	Ultrastable, highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 128-32	16.4	152
101	Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 8670-4	16.4	351
100	The enzyme-amplified amperometric DNA sensor using an electrodeposited polymer redox mediator. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 746-750		4
99	Design of a carbon nanotube/magnetic nanoparticle-based peroxidase-like nanocomplex and its application for highly efficient catalytic oxidation of phenols. <i>Nano Research</i> , 2009 , 2, 617-623	10	129
98	Modulation of DNA polymerases with gold nanoparticles and their applications in hot-start PCR. <i>Small</i> , 2009 , 5, 2597-600	11	49
97	Improved enzyme immobilization for enhanced bioelectrocatalytic activity of glucose sensor. <i>Sensors and Actuators B: Chemical</i> , 2009 , 136, 332-337	8.5	65
96	The cytotoxicity of cadmium based, aqueous phase - synthesized, quantum dots and its modulation by surface coating. <i>Biomaterials</i> , 2009 , 30, 19-25	15.6	281
95	Ligase-based multiple DNA analysis by using an electrochemical sensor array. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 1209-12	11.8	51
94	Tuning backbones and side-chains of cationic conjugated polymers for optical signal amplification of fluorescent DNA detection. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 2973-8	11.8	19
93	Multi-functional crosslinked Au nanoaggregates for the amplified optical DNA detection. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 3311-5	11.8	51
92	Sequence-specific DNA detection by using biocatalyzed electrochemiluminescence and non-fouling surfaces. <i>Biosensors and Bioelectronics</i> , 2009 , 25, 368-72	11.8	38
91	Nanoscale multiple gaseous layers on a hydrophobic surface. <i>Langmuir</i> , 2009 , 25, 8860-4	4	67
90	Adenosine detection by using gold nanoparticles and designed aptamer sequences. <i>Analyst, The</i> , 2009 , 134, 1355-60	5	143
89	Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. <i>Analytical Chemistry</i> , 2009 , 81, 7660-	6 ^{7.8}	391
88	Biomolecular sensing via coupling DNA-based recognition with gold nanoparticles. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 203001	3	39
87	Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4434-8	16.4	176
86	Enhanced specificity and efficiency of polymerase chain reactions using poly(amidoamine) dendrimers and derivatives. <i>Analyst, The</i> , 2009 , 134, 87-92	5	27
85	Artificial nano-bio-complexes: effects of nanomaterials on biomolecular reactions and applications in biosensing and detection. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 2247-55	1.3	14

84	High-sensitivity pesticide detection via silicon nanowires-supported acetylcholinesterase-based electrochemical sensors. <i>Applied Physics Letters</i> , 2008 , 93, 023113	3.4	42
83	An electrochemical sensor for pesticide assays based on carbon nanotube-enhanced acetycholinesterase activity. <i>Analyst, The</i> , 2008 , 133, 1182-6	5	94
82	An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets. <i>Journal of the American Chemical Society</i> , 2008 , 130, 6820-5	16.4	379
81	Design of an oligonucleotide-incorporated nonfouling surface and its application in electrochemical DNA sensors for highly sensitive and sequence-specific detection of target DNA. <i>Analytical Chemistry</i> , 2008 , 80, 9029-33	7.8	105
80	Design of a gold nanoprobe for rapid and portable mercury detection with the naked eye. <i>Chemical Communications</i> , 2008 , 4885-7	5.8	139
79	SIZE AND SURFACE EFFECT OF GOLD NANOPARTICLES (AuNPs) IN NANOGOLD-ASSISTED PCR. <i>Surface Review and Letters</i> , 2008 , 15, 757-762	1.1	10
78	Flexible carbon nanotube-polymer composite films with high conductivity and superhydrophobicity made by solution process. <i>Nano Letters</i> , 2008 , 8, 4454-8	11.5	143
77	Gold nanoparticlebased optical probes for target-responsive DNA structures 2008 , 41, 37-41		58
76	A nano- and micro- integrated protein chip based on quantum dot probes and a microfluidic network. <i>Nano Research</i> , 2008 , 1, 490-496	10	47
75	Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. <i>Small</i> , 2008 , 4, 1196-200	11	365
74	A Conjugated Polymer-Based Electrochemical DNA Sensor: Design and Application of a Multi-Functional and Water-Soluble Conjugated Polymer. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 1489-1494	4.8	23
73	Microwave Synthesis of Water-Dispersed CdTe/CdS/ZnS Core-Shell-Shell Quantum Dots with Excellent Photostability and Biocompatibility. <i>Advanced Materials</i> , 2008 , 20, 3416-3421	24	239
72	Enzyme-Based Multi-Component Optical Nanoprobes for Sequence- Specific Detection of DNA Hybridization. <i>Advanced Materials</i> , 2008 , 20, 497-500	24	118
71	Aptamer-based biosensors. <i>TrAC - Trends in Analytical Chemistry</i> , 2008 , 27, 108-117	14.6	930
70	Switchable charge transport path via a potassium ions promoted conformational change of G-quadruplex probe monolayer. <i>Electrochemistry Communications</i> , 2008 , 10, 1258-1260	5.1	8
69	Evaluation of gold nanoparticles as the additive in real-time polymerase chain reaction with SYBR Green I dye. <i>Nanotechnology</i> , 2008 , 19, 255101	3.4	28
68	DNA hybridization "turns on" electro-catalysis at gold electrodes. <i>Chemical Communications</i> , 2007 , 1154	4-<u>6</u>. 8	28
67	A cancer protein microarray platform using antibody fragments and its clinical applications. <i>Molecular BioSystems</i> , 2007 , 3, 151-8		22

(2006-2007)

66	A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. <i>Journal of the American Chemical Society</i> , 2007 , 129, 1042-3	16.4	526
65	A Centrifugation-based Method for Preparation of Gold Nanoparticles and its Application in Biodetection. <i>International Journal of Molecular Sciences</i> , 2007 , 8, 526-532	6.3	26
64	Electrochemical Interrogation of Interactions between Surface-Confined DNA and Methylene Blue. <i>Sensors</i> , 2007 , 7, 2671-2680	3.8	60
63	Interactions between Endostatin and Vascular Endothelial Growth Factor (VEGF) and Inhibition of Choroidal Neovascularization. <i>International Journal of Molecular Sciences</i> , 2007 , 8, 61-69	6.3	2
62	Interactions between Cytochrome c and DNA Strands Self-Assembled at Gold Electrode. <i>International Journal of Molecular Sciences</i> , 2007 , 8, 136-144	6.3	8
61	Solubilization of Single-walled Carbon Nanotubes with Single- stranded DNA Generated from Asymmetric PCR. <i>International Journal of Molecular Sciences</i> , 2007 , 8, 705-713	6.3	21
60	A Gold Nanoparticle-Based Aptamer Target Binding Readout for ATP Assay. <i>Advanced Materials</i> , 2007 , 19, 3943-3946	24	375
59	Optical Detection of Mercury(II) in Aqueous Solutions by Using Conjugated Polymers and Label-Free Oligonucleotides. <i>Advanced Materials</i> , 2007 , 19, 1471-1474	24	308
58	Electron transfer reactivity and catalytic activity of structurally rigidized hemoglobin. <i>Sensors and Actuators B: Chemical</i> , 2007 , 125, 17-21	8.5	8
57	A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. <i>Nature Protocols</i> , 2007 , 2, 2888-95	18.8	379
56	Mechanism of the interaction between Au nanoparticles and polymerase in nanoparticle PCR. <i>Science Bulletin</i> , 2007 , 52, 2345-2349		29
55	Nanogold-assisted multi-round polymerase chain reaction (PCR). <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 4428-33	1.3	23
54	Analogic China map constructed by DNA. Science Bulletin, 2006, 51, 2973-2976		93
53	Construction of molecular logic gates with a DNA-cleaving deoxyribozyme. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 1759-62	16.4	67
52	Epitaxial growth of peptide nanofilaments on inorganic surfaces: effects of interfacial hydrophobicity/hydrophilicity. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 3611-3	16.4	69
51	Epitaxial Growth of Peptide Nanofilaments on Inorganic Surfaces: Effects of Interfacial Hydrophobicity/Hydrophilicity. <i>Angewandte Chemie</i> , 2006 , 118, 3693-3695	3.6	9
50	Reactions of fullerenes with reactive methylene organophosphorus reagents: efficient synthesis of organophosphorus group substituted C60 and C70 derivatives. <i>Journal of Organic Chemistry</i> , 2006 , 71, 2267-71	4.2	9
49	Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. <i>Chemical Communications</i> , 2006 , 3780-2	5.8	350

48	Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. <i>Journal of the American Chemical Society</i> , 2006 , 128, 8575-80	16.4	389
47	Electrochemically controlled formation and growth of hydrogen nanobubbles. <i>Langmuir</i> , 2006 , 22, 8109	9-413	179
46	Potential diagnostic applications of biosensors: current and future directions. <i>International Journal of Nanomedicine</i> , 2006 , 1, 433-40	7.3	59
45	Development of Nano-Scale DNA Computing Devices. <i>Current Nanoscience</i> , 2005 , 1, 89-93	1.4	6
44	Electrochemical investigation of redox thermodynamics of immobilized myoglobin: ionic and ligation effects. <i>Langmuir</i> , 2005 , 21, 375-8	4	22
43	Compression of Single Conjugated-polymer Nanoparticles with AFM Tips. <i>Chemistry Letters</i> , 2005 , 34, 1488-1489	1.7	9
42	Electrochemical interrogation of DNA monolayers on gold surfaces. <i>Analytical Chemistry</i> , 2005 , 77, 6475	5 -/ 8 0	204
41	Biosensors based on binding-modulated donor-acceptor distances. <i>Trends in Biotechnology</i> , 2005 , 23, 186-92	15.1	121
40	Nanoparticle PCR: nanogold-assisted PCR with enhanced specificity. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 5100-3	16.4	211
39	Nanoparticle PCR: Nanogold-Assisted PCR with Enhanced Specificity. <i>Angewandte Chemie</i> , 2005 , 117, 5230-5233	3.6	21
38	Facile Interfacial Electron Transfer of Hemoglobin. <i>International Journal of Molecular Sciences</i> , 2005 , 6, 303-310	6.3	10
37	Magnetically assisted DNA assays: high selectivity using conjugated polymers for amplified fluorescent transduction. <i>Nucleic Acids Research</i> , 2005 , 33, e83	20.1	97
36	Highly sensitive biosensors based on water-soluble conjugated polymers. Science Bulletin, 2004, 49, 222	<u>!</u> 7	11
35	Electrochemical investigation of the chloride effect on hemoglobin. <i>Bioelectrochemistry</i> , 2004 , 64, 23-7	5.6	13
34	An easy and rapid method to determine aristolochic acids I and II with high sensitivity. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 378, 388-90	4.4	20
33	Electrochemical investigations of baicalin and DNA-baicalin interactions. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 379, 283-6	4.4	23
32	A nitric oxide biosensor based on horseradish peroxidase/kieselguhr co-modified pyrolytic graphite electrode. <i>Annali Di Chimica</i> , 2004 , 94, 457-62		5
31	Tuning the redox and enzymatic activity of glucose oxidase in layered organic films and its application in glucose biosensors. <i>Analytical Biochemistry</i> , 2004 , 329, 85-90	3.1	45

(2001-2004)

30	Highly sensitive voltammetric biosensor for nitric oxide based on its high affinity with hemoglobin. <i>Analytica Chimica Acta</i> , 2004 , 523, 225-228	6.6	26
29	Sensing phenothiazine drugs at a gold electrode co-modified with DNA and gold nanoparticles. <i>Analytical Sciences</i> , 2003 , 19, 653-7	1.7	28
28	Fabrication of Ultrathin, Protein-containing Films by Layer-by-Layer Assembly and Electrochemical Characterization of Hemoglobin Entrapped in the Film. <i>Chemistry Letters</i> , 2003 , 32, 296-297	1.7	31
27	Wiring electrons of cytochrome c with silver nanoparticles in layered films. <i>ChemPhysChem</i> , 2003 , 4, 13	6 4. 6	59
26	Direct electrochemical characterization of Vitreoscilla sp. hemoglobin entrapped in organic films. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2003 , 1649, 123-6	4	14
25	A nitric oxide biosensor based on the multi-assembly of hemoglobin/montmorillonite/polyvinyl alcohol at a pyrolytic graphite electrode. <i>Biosensors and Bioelectronics</i> , 2003 , 19, 441-5	11.8	67
24	Photoluminescence Quenching of Water-Soluble Conjugated Polymers by Viologen Derivatives: Effect of Hydrophobicity. <i>Langmuir</i> , 2003 , 19, 3554-3556	4	20
23	An electrochemical investigation of ligand-binding abilities of film-entrapped myoglobin. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2003 , 1623, 29-32	4	13
22	Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 6297-301	11.5	469
21	Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 9134-7	11.5	915
20	A hydrogen peroxide biosensor based on the bioelectrocatalysis of hemoglobin incorporated in a kieselgubr film. <i>Sensors and Actuators B: Chemical</i> , 2002 , 84, 214-218	8.5	74
19	Nitric oxide biosensors based on Hb/phosphatidylcholine films. <i>Analytical Sciences</i> , 2002 , 18, 129-32	1.7	34
18	Enhanced electron-transfer reactivity of cytochrome b5 by dimethylsulfoxide and N,N'-dimethylformamide. <i>Analytical Sciences</i> , 2002 , 18, 1031-3	1.7	8
17	Spectroscopy and Electrochemistry of the Covalent Pyridine-Cytochrome c Complex and a Pyridine-Induced, Alkaline-like Conformation. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 11375-11383	3.4	12
16	High-efficiency fluorescence quenching of conjugated polymers by proteins. <i>Journal of the American Chemical Society</i> , 2002 , 124, 5642-3	16.4	290
15	Incorporation of horseradish peroxidase in a Kieselguhr membrane and the application to a mediator-free hydrogen peroxide sensor. <i>Analytical Sciences</i> , 2001 , 17, 273-6	1.7	23
14	Effect of dimethyl sulfoxide on the electron transfer reactivity of hemoglobin. <i>Bioelectrochemistry</i> , 2001 , 54, 49-51	5.6	27
13	An unmediated hydrogen peroxide biosensor based on hemoglobin incorporated in a montmorillonite membrane. <i>Analyst, The</i> , 2001 , 126, 1086-9	5	26

12	Electron-transfer reactivity and enzymatic activity of hemoglobin in a SP Sephadex membrane. <i>Analytical Chemistry</i> , 2001 , 73, 2850-4	7.8	169
11	Adsorptive Behavior of Hemoglobin at a Platinum Electrode and Its Application to the Determination of Protein <i>Analytical Sciences</i> , 2000 , 16, 463-465	1.7	1
10	Iodide Modified Silver Electrode and Its Application to the Electroanalysis of Hemoglobin. <i>Electroanalysis</i> , 2000 , 12, 205-208	3	24
9	Direct Electrochemistry and Enhanced Catalytic Activity for Hemoglobin in a Sodium Montmorillonite Film. <i>Electroanalysis</i> , 2000 , 12, 1156-1158	3	98
8	A reagentless nitric oxide biosensor based on hemoglobin DNA films. <i>Analytica Chimica Acta</i> , 2000 , 423, 95-100	6.6	86
7	An Unmediated Hydrogen Peroxide Sensor Based on a Hemoglobin-sds Film Modified Electrode. <i>Analytical Letters</i> , 2000 , 33, 2631-2644	2.2	28
6	Electrochemical Detection of Cecropin CM4 Gene by Single Stranded Probe and Cysteine Modified Gold Electrode. <i>Analytical Letters</i> , 2000 , 33, 1479-1490	2.2	7
5	Direct electrochemical characterization of the interaction between haemoglobin and nitric oxide. <i>Physical Chemistry Chemical Physics</i> , 2000 , 2, 4409-4413	3.6	34
4	Voltammetric response and determination of DNA with a silver electrode. <i>Analytical Biochemistry</i> , 1999 , 271, 1-7	3.1	24
3	DNA Nanostructures Coordinate Gene Silencing in Mature Plants		1
2	Construction of Functional DNA Nanostructures for Theranostic Applications93-130		2
1	Phase transferring luminescent gold nanoclusters via single-stranded DNA. <i>Science China Chemistry</i> ,1	7.9	O