Chun-Hai Fan

List of Publications by Citations

Source: https://exaly.com/author-pdf/5827897/chun-hai-fan-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

56,000 118 731 214 h-index g-index citations papers 801 63,410 7.82 10.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
731	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). <i>Autophagy</i> , 2016 , 12, 1-222	10.2	3838
730	Graphene-based antibacterial paper. ACS Nano, 2010, 4, 4317-23	16.7	1540
729	A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. <i>Advanced Functional Materials</i> , 2010 , 20, 453-459	15.6	1234
728	Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. <i>Nature Nanotechnology</i> , 2013 , 8, 594-601	28.7	1008
727	Aptamer-based biosensors. <i>TrAC - Trends in Analytical Chemistry</i> , 2008 , 27, 108-117	14.6	930
726	Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 9134-7	11.5	915
725	Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. <i>Journal of the American Chemical Society</i> , 2013 , 135, 5998-6001	16.4	874
724	Isothermal Amplification of Nucleic Acids. <i>Chemical Reviews</i> , 2015 , 115, 12491-545	68.1	865
723	Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano, 2011 , 5, 3693-700	16.7	724
722	Target-responsive structural switching for nucleic acid-based sensors. <i>Accounts of Chemical Research</i> , 2010 , 43, 631-41	24.3	655
721	Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. <i>Carbon</i> , 2011 , 49, 986-995	10.4	570
720	Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. <i>ACS Nano</i> , 2011 , 5, 8783-9	16.7	555
719	The cytotoxicity of cadmium-based quantum dots. <i>Biomaterials</i> , 2012 , 33, 1238-44	15.6	543
718	A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. <i>Journal of the American Chemical Society</i> , 2007 , 129, 1042-3	16.4	526
717	Functional nanoprobes for ultrasensitive detection of biomolecules. <i>Chemical Society Reviews</i> , 2010 , 39, 4234-43	58.5	492
716	Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 6297-301	11.5	469
715	DNA Nanotechnology-Enabled Drug Delivery Systems. <i>Chemical Reviews</i> , 2019 , 119, 6459-6506	68.1	447

(2007-2010)

714	A graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene oxide and a silver-specific oligonucleotide. <i>Chemical Communications</i> , 2010 , 46, 2596-8	5.8	432	
713	Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. <i>ACS Nano</i> , 2010 , 4, 7451-8	16.7	416	
712	A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Advanced Materials, 2010 , 22, 4754-8	24	404	
71:	Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. <i>Analytical Chemistry</i> , 2014 , 86, 2124-30	7.8	392	
710	Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. <i>Analytical Chemistry</i> , 2009 , 81, 7660-	-6 ^{7.8}	391	
70	Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): 9 effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. Journal of the American Chemical Society, 2006 , 128, 8575-80	16.4	389	
70	Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. <i>Accounts of Chemical Research</i> , 2014 , 47, 612-23	24.3	382	
70	An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets. Journal of the American Chemical Society, 2008 , 130, 6820-5	16.4	379	
70	A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. <i>Nature Protocols</i> , 2007 , 2, 2888-95	18.8	379	
70.	A Gold Nanoparticle-Based Aptamer Target Binding Readout for ATP Assay. <i>Advanced Materials</i> , 2007 , 19, 3943-3946	24	375	
70.	Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11876-9	16.4	367	
70 <u>.</u>	Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small, 2008 , 4, 1196-200	11	365	
70.	Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 8670-4	16.4	351	
70	Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. <i>Chemical Communications</i> , 2006 , 3780-2	5.8	350	
70	Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7745-50	16.4	326	
69	Smart drug delivery nanocarriers with self-assembled DNA nanostructures. <i>Advanced Materials</i> , 2013 , 25, 4386-96	24	313	
69	Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9020-4	16.4	309	
69;	Optical Detection of Mercury(II) in Aqueous Solutions by Using Conjugated Polymers and Label-Free Oligonucleotides. <i>Advanced Materials</i> , 2007 , 19, 1471-1474	24	308	

696	Functional DNA nanostructures for theranostic applications. <i>Accounts of Chemical Research</i> , 2014 , 47, 550-9	24.3	306
695	High-efficiency fluorescence quenching of conjugated polymers by proteins. <i>Journal of the American Chemical Society</i> , 2002 , 124, 5642-3	16.4	290
694	Lab in a tube: ultrasensitive detection of microRNAs at the single-cell level and in breast cancer patients using quadratic isothermal amplification. <i>Journal of the American Chemical Society</i> , 2013 , 135, 4604-7	16.4	284
693	The cytotoxicity of cadmium based, aqueous phase - synthesized, quantum dots and its modulation by surface coating. <i>Biomaterials</i> , 2009 , 30, 19-25	15.6	281
692	The biocompatibility of nanodiamonds and their application in drug delivery systems. <i>Theranostics</i> , 2012 , 2, 302-12	12.1	274
691	Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 11994-8	16.4	268
690	Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2151-5	16.4	264
689	An Exonuclease III-Powered, On-Particle Stochastic DNA Walker. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1855-1858	16.4	248
688	Laundering durability of superhydrophobic cotton fabric. Advanced Materials, 2010, 22, 5473-7	24	243
687	Intracellular imaging with a graphene-based fluorescent probe. Small, 2010, 6, 1686-92	11	243
687 686	Intracellular imaging with a graphene-based fluorescent probe. <i>Small</i> , 2010 , 6, 1686-92 Microwave Synthesis of Water-Dispersed CdTe/CdS/ZnS Core-Shell-Shell Quantum Dots with Excellent Photostability and Biocompatibility. <i>Advanced Materials</i> , 2008 , 20, 3416-3421	11 24	243239
<u> </u>	Microwave Synthesis of Water-Dispersed CdTe/CdS/ZnS Core-Shell-Shell Quantum Dots with		
686	Microwave Synthesis of Water-Dispersed CdTe/CdS/ZnS Core-Shell-Shell Quantum Dots with Excellent Photostability and Biocompatibility. <i>Advanced Materials</i> , 2008 , 20, 3416-3421 Electrochemical detection of nucleic acids, proteins, small molecules and cells using a	24	239
686	Microwave Synthesis of Water-Dispersed CdTe/CdS/ZnS Core-Shell-Shell Quantum Dots with Excellent Photostability and Biocompatibility. <i>Advanced Materials</i> , 2008 , 20, 3416-3421 Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. <i>Nature Protocols</i> , 2016 , 11, 1244-63	18.8	239
686 685 684	Microwave Synthesis of Water-Dispersed CdTe/CdS/ZnS Core-Shell-Shell Quantum Dots with Excellent Photostability and Biocompatibility. <i>Advanced Materials</i> , 2008 , 20, 3416-3421 Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. <i>Nature Protocols</i> , 2016 , 11, 1244-63 Complex silica composite nanomaterials templated with DNA origami. <i>Nature</i> , 2018 , 559, 593-598 The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions	24 18.8 50.4	239234233
686 685 684 683	Microwave Synthesis of Water-Dispersed CdTe/CdS/ZnS Core-Shell-Shell Quantum Dots with Excellent Photostability and Biocompatibility. <i>Advanced Materials</i> , 2008 , 20, 3416-3421 Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. <i>Nature Protocols</i> , 2016 , 11, 1244-63 Complex silica composite nanomaterials templated with DNA origami. <i>Nature</i> , 2018 , 559, 593-598 The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. <i>Biomaterials</i> , 2010 , 31, 4829-34	24 18.8 50.4 15.6	239234233233
686 685 684 683	Microwave Synthesis of Water-Dispersed CdTe/CdS/ZnS Core-Shell-Shell Quantum Dots with Excellent Photostability and Biocompatibility. <i>Advanced Materials</i> , 2008 , 20, 3416-3421 Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. <i>Nature Protocols</i> , 2016 , 11, 1244-63 Complex silica composite nanomaterials templated with DNA origami. <i>Nature</i> , 2018 , 559, 593-598 The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. <i>Biomaterials</i> , 2010 , 31, 4829-34 Silicon nanostructures for bioapplications. <i>Nano Today</i> , 2010 , 5, 282-295 Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection.	24 18.8 50.4 15.6	239234233233227

(2009-2011)

678	Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. <i>Nano Letters</i> , 2011 , 11, 3974-8	11.5	218
677	Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors. Journal of the American Chemical Society, 2013 , 135, 696-702	16.4	213
676	DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors. <i>Analytical Chemistry</i> , 2011 , 83, 7418-23	7.8	211
675	Nanoparticle PCR: nanogold-assisted PCR with enhanced specificity. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 5100-3	16.4	211
674	A graphene-enhanced molecular beacon for homogeneous DNA detection. <i>Nanoscale</i> , 2010 , 2, 1021-6	7.7	206
673	Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. <i>Small</i> , 2010 , 6, 201-4	11	205
672	Electrochemical interrogation of DNA monolayers on gold surfaces. <i>Analytical Chemistry</i> , 2005 , 77, 647	5 <i>-</i> 8 0	204
671	A graphene-based sensor array for high-precision and adaptive target identification with ensemble aptamers. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13843-9	16.4	196
670	Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces. <i>Langmuir</i> , 2010 , 26, 1936-9	4	194
669	Imaging of Colorectal Cancers Using Activatable Nanoprobes with Second Near-Infrared Window Emission. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3626-3630	16.4	192
668	Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. <i>Nature Chemistry</i> , 2017 , 9, 1056-1067	17.6	186
667	Creating SERS hot spots on MoS(2) nanosheets with in situ grown gold nanoparticles. <i>ACS Applied Materials & Mater</i>	9.5	185
666	DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. <i>Nature Biomedical Engineering</i> , 2018 , 2, 865-877	19	184
665	Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. <i>RSC Advances</i> , 2014 , 4, 27625	3.7	180
664	Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification. <i>ChemPhysChem</i> , 2010 , 11, 585-9	3.2	180
663	Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nature Communications, 2018 , 9, 1339	17.4	179
662	Electrochemically controlled formation and growth of hydrogen nanobubbles. <i>Langmuir</i> , 2006 , 22, 8109	9-413	179
661	Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4434-8	16.4	176

660	Development of electrochemical immunosensors towards point of care diagnostics. <i>Biosensors and Bioelectronics</i> , 2013 , 47, 1-11	11.8	175
659	Graphene oxide-based antibacterial cotton fabrics. <i>Advanced Healthcare Materials</i> , 2013 , 2, 1259-66	10.1	173
658	Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. <i>Analytical Chemistry</i> , 2012 , 84, 4622-7	7.8	169
657	Electron-transfer reactivity and enzymatic activity of hemoglobin in a SP Sephadex membrane. <i>Analytical Chemistry</i> , 2001 , 73, 2850-4	7.8	169
656	Functional nanoprobes for ultrasensitive detection of biomolecules: an update. <i>Chemical Society Reviews</i> , 2014 , 43, 1601-11	58.5	166
655	Nanoscale optical probes for cellular imaging. <i>Chemical Society Reviews</i> , 2014 , 43, 2650-61	58.5	166
654	Polyvalent immunostimulatory nanoagents with self-assembled CpG oligonucleotide-conjugated gold nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 1202-6	16.4	166
653	DNAzyme-based rolling-circle amplification DNA machine for ultrasensitive analysis of microRNA in Drosophila larva. <i>Analytical Chemistry</i> , 2012 , 84, 7664-9	7.8	162
652	Multicolor Gold-Silver Nano-Mushrooms as Ready-to-Use SERS Probes for Ultrasensitive and Multiplex DNA/miRNA Detection. <i>Analytical Chemistry</i> , 2017 , 89, 2531-2538	7.8	161
651	DNA Nanostructure-based Interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA. <i>Scientific Reports</i> , 2012 , 2, 867	4.9	161
650	Nanomaterials-based sensors for applications in environmental monitoring. <i>Journal of Materials Chemistry</i> , 2012 , 22, 18101		160
649	Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. <i>Nano Letters</i> , 2012 , 12, 5262-8	11.5	158
648	In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots. <i>Biomaterials</i> , 2011 , 32, 5855-62	15.6	157
647	Fluorescent biosensors enabled by graphene and graphene oxide. <i>Biosensors and Bioelectronics</i> , 2017 , 89, 96-106	11.8	155
646	Fluorescent In Situ Targeting Probes for Rapid Imaging of Ovarian-Cancer-Specific EGlutamyltranspeptidase. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 7349-53	16.4	155
645	A dumbbell probe-mediated rolling circle amplification strategy for highly sensitive microRNA detection. <i>Nucleic Acids Research</i> , 2010 , 38, e156	20.1	155
644	Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range. <i>Chemical Communications</i> , 2011 , 47, 6278-80	5.8	155
643	Nanomaterial-Based Fluorescent DNA Analysis: A Comparative Study of the Quenching Effects of Graphene Oxide, Carbon Nanotubes, and Gold Nanoparticles. <i>Advanced Functional Materials</i> , 2013 , 23, 4140-4148	15.6	154

(2009-2019)

642	Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. <i>Chemical Reviews</i> , 2019 , 119, 12208-12278	68.1	153	
641	Ultrastable, highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 128-32	16.4	152	
640	Visible Light Driven Photoelectrochemical Water Oxidation by Zn- and Ti-Doped Hematite Nanostructures. <i>ACS Catalysis</i> , 2014 , 4, 2006-2015	13.1	150	
639	Radiation induced reduction: an effective and clean route to synthesize functionalized graphene. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7775		149	
638	Stable Nanocomposite Based on PEGylated and Silver Nanoparticles Loaded Graphene Oxide for Long-Term Antibacterial Activity. <i>ACS Applied Materials & District Research</i> , 9, 15328-15341	9.5	147	
637	DNA Hydrogel with Aptamer-Toehold-Based Recognition, Cloaking, and Decloaking of Circulating Tumor Cells for Live Cell Analysis. <i>Nano Letters</i> , 2017 , 17, 5193-5198	11.5	144	
636	Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular uptake. <i>ACS Applied Materials & District Applied & D</i>	9.5	143	
635	Adenosine detection by using gold nanoparticles and designed aptamer sequences. <i>Analyst, The</i> , 2009 , 134, 1355-60	5	143	
634	Flexible carbon nanotube-polymer composite films with high conductivity and superhydrophobicity made by solution process. <i>Nano Letters</i> , 2008 , 8, 4454-8	11.5	143	
633	Design of a gold nanoprobe for rapid and portable mercury detection with the naked eye. <i>Chemical Communications</i> , 2008 , 4885-7	5.8	139	
632	Electrochemical DNA Biosensor Based on a Tetrahedral Nanostructure Probe for the Detection of Avian Influenza A (H7N9) Virus. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 8834-42	9.5	138	
631	Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. <i>Mikrochimica Acta</i> , 2014 , 181, 1497-1503	5.8	134	
630	A graphene-conjugated oligomer hybrid probe for light-up sensing of lectin and Escherichia coli. <i>Advanced Materials</i> , 2011 , 23, 4386-91	24	132	
629	Dietary Iron Oxide Nanoparticles Delay Aging and Ameliorate Neurodegeneration in Drosophila. <i>Advanced Materials</i> , 2016 , 28, 1387-93	24	132	
628	Ultrasensitive electrochemical detection of prostate-specific antigen by using antibodies anchored on a DNA nanostructural scaffold. <i>Analytical Chemistry</i> , 2014 , 86, 7337-42	7.8	131	
627	Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS nanosheet. <i>Biosensors and Bioelectronics</i> , 2017 , 94, 552-559	11.8	130	
626	COVID-19: A Call for Physical Scientists and Engineers. ACS Nano, 2020, 14, 3747-3754	16.7	129	
625	Design of a carbon nanotube/magnetic nanoparticle-based peroxidase-like nanocomplex and its application for highly efficient catalytic oxidation of phenols. <i>Nano Research</i> , 2009 , 2, 617-623	10	129	

624	Multivalent capture and detection of cancer cells with DNA nanostructured biosensors and multibranched hybridization chain reaction amplification. <i>Analytical Chemistry</i> , 2014 , 86, 7843-8	7.8	128
623	Dual-Target Electrochemical Biosensing Based on DNA Structural Switching on Gold Nanoparticle-Decorated MoS2 Nanosheets. <i>ACS Applied Materials & Decorated MoS2 Nanosheets</i> . <i>ACS Applied Materials & Decorated MoS2 Nanosheets</i> .	9.5	128
622	Nanoplasmonic imaging of latent fingerprints and identification of cocaine. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 11542-5	16.4	127
621	Carbon nanotube-based ultrasensitive multiplexing electrochemical immunosensor for cancer biomarkers. <i>Biosensors and Bioelectronics</i> , 2011 , 30, 93-9	11.8	127
620	Programmable and printable Bacillus subtilis biofilms as engineered living materials. <i>Nature Chemical Biology</i> , 2019 , 15, 34-41	11.7	127
619	Organelle-Specific Triggered Release of Immunostimulatory Oligonucleotides from Intrinsically Coordinated DNA-Metal-Organic Frameworks with Soluble Exoskeleton. <i>Journal of the American Chemical Society</i> , 2017 , 139, 15784-15791	16.4	125
618	DNA-conjugated quantum dot nanoprobe for high-sensitivity fluorescent detection of DNA and micro-RNA. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 1152-7	9.5	124
617	Concept and Development of Framework Nucleic Acids. <i>Journal of the American Chemical Society</i> , 2018 , 140, 17808-17819	16.4	124
616	Highly Sensitive Diagnosis of Small Hepatocellular Carcinoma Using pH-Responsive Iron Oxide Nanocluster Assemblies. <i>Journal of the American Chemical Society</i> , 2018 , 140, 10071-10074	16.4	122
615	Biosensors based on binding-modulated donor-acceptor distances. <i>Trends in Biotechnology</i> , 2005 , 23, 186-92	15.1	121
614	Solving mazes with single-molecule DNA navigators. <i>Nature Materials</i> , 2019 , 18, 273-279	27	121
613	DNA nanotechnology-enabled biosensors. <i>Biosensors and Bioelectronics</i> , 2016 , 76, 68-79	11.8	118
612	Water-dispersed near-infrared-emitting quantum dots of ultrasmall sizes for in vitro and in vivo imaging. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5695-8	16.4	118
611	Enzyme-Based Multi-Component Optical Nanoprobes for Sequence- Specific Detection of DNA Hybridization. <i>Advanced Materials</i> , 2008 , 20, 497-500	24	118
610	Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. <i>Nature Communications</i> , 2017 , 8, 15646	17.4	116
609	Integration of Switchable DNA-Based Hydrogels with Surfaces by the Hybridization Chain Reaction. <i>Nano Letters</i> , 2015 , 15, 7773-8	11.5	115
608	A DNA-Origami chip platform for label-free SNP genotyping using toehold-mediated strand displacement. <i>Small</i> , 2010 , 6, 1854-8	11	115
607	Hydrogen Sulfide-Activatable Second Near-Infrared Fluorescent Nanoassemblies for Targeted Photothermal Cancer Therapy. <i>Nano Letters</i> , 2018 , 18, 6411-6416	11.5	115

(2013-2014)

606	Target-responsive, DNA nanostructure-based E-DNA sensor for microRNA analysis. <i>Analytical Chemistry</i> , 2014 , 86, 2285-8	7.8	112
605	DNA-directed assembly of gold nanohalo for quantitative plasmonic imaging of single-particle catalysis. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4292-5	16.4	111
604	Multiple-Armed Tetrahedral DNA Nanostructures for Tumor-Targeting, Dual-Modality in Vivo Imaging. <i>ACS Applied Materials & Discours (Materials & Discours)</i> 10 (2016) 10 (2016) 11 (2016) 12 (2016)	9.5	110
603	Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs. <i>Small</i> , 2013 , 9, 3082-7	11	109
602	Clamped Hybridization Chain Reactions for the Self-Assembly of Patterned DNA Hydrogels. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 2171-2175	16.4	107
601	Framework nucleic acids as programmable carrier for transdermal drug delivery. <i>Nature Communications</i> , 2019 , 10, 1147	17.4	106
600	Molecular logic gates on DNA origami nanostructures for microRNA diagnostics. <i>Analytical Chemistry</i> , 2014 , 86, 1932-6	7.8	106
599	Design of an oligonucleotide-incorporated nonfouling surface and its application in electrochemical DNA sensors for highly sensitive and sequence-specific detection of target DNA. <i>Analytical Chemistry</i> , 2008 , 80, 9029-33	7.8	105
598	Gold nanostructures encoded by non-fluorescent small molecules in polyA-mediated nanogaps as universal SERS nanotags for recognizing various bioactive molecules. <i>Chemical Science</i> , 2014 , 5, 4460-44	186 ⁴	104
597	DNA nanostructures coordinate gene silencing in mature plants. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 7543-7548	11.5	103
596	Universal Fluorescence Biosensor Platform Based on Graphene Quantum Dots and Pyrene-Functionalized Molecular Beacons for Detection of MicroRNAs. <i>ACS Applied Materials & Interfaces</i> , 2015 , 7, 16152-6	9.5	102
595	Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. <i>NPG Asia Materials</i> , 2013 , 5, e44-e44	10.3	102
594	DNA Nanostructure-Programmed Like-Charge Attraction at the Cell-Membrane Interface. <i>ACS Central Science</i> , 2018 , 4, 1344-1351	16.8	102
593	Direct Electrochemistry and Enhanced Catalytic Activity for Hemoglobin in a Sodium Montmorillonite Film. <i>Electroanalysis</i> , 2000 , 12, 1156-1158	3	98
592	Gold nanoparticles for high-throughput genotyping of long-range haplotypes. <i>Nature Nanotechnology</i> , 2011 , 6, 639-44	28.7	97
591	Magnetically assisted DNA assays: high selectivity using conjugated polymers for amplified fluorescent transduction. <i>Nucleic Acids Research</i> , 2005 , 33, e83	20.1	97
590	DNA origami. <i>Nature Reviews Methods Primers</i> , 2021 , 1,		96
589	Scaffolded biosensors with designed DNA nanostructures. NPG Asia Materials, 2013, 5, e51-e51	10.3	94

588	A graphene oxide-based nano-beacon for DNA phosphorylation analysis. <i>Chemical Communications</i> , 2011 , 47, 1201-3	5.8	94
587	An electrochemical sensor for pesticide assays based on carbon nanotube-enhanced acetycholinesterase activity. <i>Analyst, The</i> , 2008 , 133, 1182-6	5	94
586	Growth and origami folding of DNA on nanoparticles for high-efficiency molecular transport in cellular imaging and drug delivery. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2431-5	16.4	93
585	Shape-controlled gold nanoparticles supported on MoSIhanosheets: synergistic effect of thionine and MoSIand their application for electrochemical label-free immunosensing. <i>Nanoscale</i> , 2015 , 7, 19129	9-3· 3	93
584	Folding super-sized DNA origami with scaffold strands from long-range PCR. <i>Chemical Communications</i> , 2012 ,	5.8	93
583	Analogic China map constructed by DNA. <i>Science Bulletin</i> , 2006 , 51, 2973-2976		93
582	Target-triggered three-way junction structure and polymerase/nicking enzyme synergetic isothermal quadratic DNA machine for highly specific, one-step, and rapid microRNA detection at attomolar level. <i>Analytical Chemistry</i> , 2014 , 86, 8098-105	7.8	92
581	An Intelligent DNA Nanorobot with Enhanced Protein Lysosomal Degradation of HER2. <i>Nano Letters</i> , 2019 , 19, 4505-4517	11.5	91
580	Clicking DNA to gold nanoparticles: poly-adenine-mediated formation of monovalent DNA-gold nanoparticle conjugates with nearly quantitative yield. <i>NPG Asia Materials</i> , 2015 , 7, e159-e159	10.3	91
579	DNA nanostructure-based universal microarray platform for high-efficiency multiplex bioanalysis in biofluids. <i>ACS Applied Materials & Discounty of the Materials</i>	9.5	91
578	Regenerable electrochemical immunological sensing at DNA nanostructure-decorated gold surfaces. <i>Chemical Communications</i> , 2011 , 47, 6254-6	5.8	90
577	PolyA-Mediated DNA Assembly on Gold Nanoparticles for Thermodynamically Favorable and Rapid Hybridization Analysis. <i>Analytical Chemistry</i> , 2016 , 88, 4949-54	7.8	90
576	Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon-nanowire-array integrated with magnetic upconversion nanoprobes. <i>Biomaterials</i> , 2015 , 54, 55-6	2 ^{15.6}	89
575	Charge transport within a three-dimensional DNA nanostructure framework. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13148-51	16.4	89
574	Silicon nanowire-based molecular beacons for high-sensitivity and sequence-specific DNA multiplexed analysis. <i>ACS Nano</i> , 2012 , 6, 2582-90	16.7	89
573	Gold-nanoparticle-mediated jigsaw-puzzle-like assembly of supersized plasmonic DNA origami. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2966-9	16.4	88
572	Programming nanoparticle valence bonds with single-stranded DNA encoders. <i>Nature Materials</i> , 2020 , 19, 781-788	27	88
571	A bubble-mediated intelligent microscale electrochemical device for single-step quantitative bioassays. <i>Advanced Materials</i> , 2014 , 26, 4671-6	24	87

(2011-2017)

570	Facile Synthesis of a MoS-Prussian Blue Nanocube Nanohybrid-Based Electrochemical Sensing Platform for Hydrogen Peroxide and Carcinoembryonic Antigen Detection. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 12773-12781	9.5	86
569	A carbon nanotube-based high-sensitivity electrochemical immunosensor for rapid and portable detection of clenbuterol. <i>Biosensors and Bioelectronics</i> , 2011 , 28, 308-13	11.8	86
568	A reagentless nitric oxide biosensor based on hemoglobin DNA films. <i>Analytica Chimica Acta</i> , 2000 , 423, 95-100	6.6	86
567	One-Shot Immunomodulatory Nanodiamond Agents for Cancer Immunotherapy. <i>Advanced Materials</i> , 2016 , 28, 2699-708	24	85
566	Rational design of pH-controlled DNA strand displacement. <i>Journal of the American Chemical Society</i> , 2014 , 136, 16469-72	16.4	85
565	Structural DNA nanotechnology for intelligent drug delivery. <i>Small</i> , 2014 , 10, 4626-35	11	85
564	Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10176-10179	16.4	85
563	Reconfigurable Three-Dimensional DNA Nanostructures for the Construction of Intracellular Logic Sensors. <i>Angewandte Chemie</i> , 2012 , 124, 9154-9158	3.6	83
562	Inhibiting Methicillin-Resistant Staphylococcus aureus by Tetrahedral DNA Nanostructure-Enabled Antisense Peptide Nucleic Acid Delivery. <i>Nano Letters</i> , 2018 , 18, 5652-5659	11.5	82
561	On-Electrode Synthesis of Shape-Controlled Hierarchical Flower-Like Gold Nanostructures for Efficient Interfacial DNA Assembly and Sensitive Electrochemical Sensing of MicroRNA. <i>Small</i> , 2016 , 12, 3794-801	11	81
560	Framework-Nucleic-Acid-Enabled Biosensor Development. ACS Sensors, 2018, 3, 903-919	9.2	79
559	CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing. <i>Small</i> , 2014 , 10, 2022-8	11	79
558	Self-assembly of poly-adenine-tailed CpG oligonucleotide-gold nanoparticle nanoconjugates with immunostimulatory activity. <i>Small</i> , 2014 , 10, 368-75	11	79
557	A molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed DNA detection. <i>Small</i> , 2013 , 9, 2493-9, 2652	11	79
556	Preparation of polymer decorated graphene oxide by Pray induced graft polymerization. <i>Nanoscale</i> , 2012 , 4, 1742-8	7.7	78
555	Single-Molecule Analysis of MicroRNA and Logic Operations Using a Smart Plasmonic Nanobiosensor. <i>Journal of the American Chemical Society</i> , 2018 , 140, 3988-3993	16.4	77
554	Uniform Au@Pt core-shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction. <i>Nanoscale</i> , 2016 , 8, 602-8	7.7	77
553	Electrochemical single nucleotide polymorphisms genotyping on surface immobilized three-dimensional branched DNA nanostructure. <i>Science China Chemistry</i> , 2011 , 54, 1273-1276	7.9	77

552	Highly sensitive fluorescence assay of DNA methyltransferase activity via methylation-sensitive cleavage coupled with nicking enzyme-assisted signal amplification. <i>Biosensors and Bioelectronics</i> , 2013 , 42, 56-61	11.8	75
551	Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection. <i>International Journal of Nanomedicine</i> , 2014 , 9, 4697-707	7.3	74
550	Graphene-templated formation of two-dimensional lepidocrocite nanostructures for high-efficiency catalytic degradation of phenols. <i>Energy and Environmental Science</i> , 2011 , 4, 2035	35.4	74
549	A hydrogen peroxide biosensor based on the bioelectrocatalysis of hemoglobin incorporated in a kieselgubr film. <i>Sensors and Actuators B: Chemical</i> , 2002 , 84, 214-218	8.5	74
548	Theranostic Nanoplatform with Hydrogen Sulfide Activatable NIR Responsiveness for Imaging-Guided On-Demand Drug Release. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16826-	1 1683 0	73
547	DNA Framework-Programmed Cell Capture via Topology-Engineered Receptor-Ligand Interactions. Journal of the American Chemical Society, 2019 , 141, 18910-18915	16.4	72
546	Catalysis-Driven Self-Thermophoresis of Janus Plasmonic Nanomotors. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 515-518	16.4	70
545	Programming Enzyme-Initiated Autonomous DNAzyme Nanodevices in Living Cells. <i>ACS Nano</i> , 2017 , 11, 11908-11914	16.7	70
544	Valency-Controlled Framework Nucleic Acid Signal Amplifiers. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7131-7135	16.4	70
543	A Surface-Confined Proton-Driven DNA Pump Using a Dynamic 3D DNA Scaffold. <i>Advanced Materials</i> , 2016 , 28, 6860-5	24	70
542	Electrochemical switching with 3D DNA tetrahedral nanostructures self-assembled at gold electrodes. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 8928-31	9.5	69
541	Real-Time Imaging of Single-Molecule Enzyme Cascade Using a DNA Origami Raft. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17525-17532	16.4	69
540	Epitaxial growth of peptide nanofilaments on inorganic surfaces: effects of interfacial hydrophobicity/hydrophilicity. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 3611-3	16.4	69
539	An electrochemically actuated reversible DNA switch. <i>Nano Letters</i> , 2010 , 10, 1393-7	11.5	68
538	Inhibition of the in vitro replication of DNA by an aptamer-protein complex in an autonomous DNA machine. <i>Chemistry - A European Journal</i> , 2009 , 15, 11898-903	4.8	68
537	Quantizing single-molecule surface-enhanced Raman scattering with DNA origami metamolecules. <i>Science Advances</i> , 2019 , 5, eaau4506	14.3	67
536	Nanoscale multiple gaseous layers on a hydrophobic surface. <i>Langmuir</i> , 2009 , 25, 8860-4	4	67
535	Construction of molecular logic gates with a DNA-cleaving deoxyribozyme. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 1759-62	16.4	67

(2014-2003)

534	A nitric oxide biosensor based on the multi-assembly of hemoglobin/montmorillonite/polyvinyl alcohol at a pyrolytic graphite electrode. <i>Biosensors and Bioelectronics</i> , 2003 , 19, 441-5	11.8	67	
533	Nanostructure-based surface-enhanced Raman scattering biosensors for nucleic acids and proteins. Journal of Materials Chemistry B, 2016 , 4, 1757-1769	7.3	65	
532	Improved enzyme immobilization for enhanced bioelectrocatalytic activity of glucose sensor. Sensors and Actuators B: Chemical, 2009, 136, 332-337	8.5	65	
531	DNA Nanotechnology-Enabled Interfacial Engineering for Biosensor Development. <i>Annual Review of Analytical Chemistry</i> , 2018 , 11, 171-195	12.5	64	
530	Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate. <i>Science China Chemistry</i> , 2016 , 59, 237-242	7.9	64	
529	Design and applications of gold nanoparticle conjugates by exploiting biomolecule-gold nanoparticle interactions. <i>Nanoscale</i> , 2013 , 5, 2589-99	7.7	64	
528	A methylation-blocked cascade amplification strategy for label-free colorimetric detection of DNA methyltransferase activity. <i>Biosensors and Bioelectronics</i> , 2014 , 54, 565-70	11.8	63	
527	A graphene oxide-based fluorescent biosensor for the analysis of peptide-receptor interactions and imaging in somatostatin receptor subtype 2 overexpressed tumor cells. <i>Analytical Chemistry</i> , 2013 , 85, 7732-7	7.8	63	
526	Direct three-dimensional imaging of the buried interfaces between water and superhydrophobic surfaces. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 9145-8	16.4	63	
525	DNA origami-based shape IDs for single-molecule nanomechanical genotyping. <i>Nature Communications</i> , 2017 , 8, 14738	17.4	62	
524	Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging. <i>Nanoscale</i> , 2016 , 8, 2090-6	7.7	61	
523	Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification. <i>Nano Research</i> , 2015 , 8, 731-742	10	60	
522	Asymmetric DNA origami for spatially addressable and index-free solution-phase DNA chips. <i>Advanced Materials</i> , 2010 , 22, 2672-5	24	60	
521	Electrochemical Interrogation of Interactions between Surface-Confined DNA and Methylene Blue. <i>Sensors</i> , 2007 , 7, 2671-2680	3.8	60	
520	Transfer of Two-Dimensional Oligonucleotide Patterns onto Stereocontrolled Plasmonic Nanostructures through DNA-Origami-Based Nanoimprinting Lithography. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8036-40	16.4	60	
519	Size-Dependent Regulation of Intracellular Trafficking of Polystyrene Nanoparticle-Based Drug-Delivery Systems. <i>ACS Applied Materials & Drug-Delivery Systems</i> . <i>ACS Applied Materials & Drug-Delivery Systems</i> .	9.5	59	
518	Two-dimensional nanomaterials for biosensing applications. <i>TrAC - Trends in Analytical Chemistry</i> , 2019 , 119, 115610	14.6	59	
517	Size-dependent programming of the dynamic range of graphene oxide-DNA interaction-based ion sensors. <i>Analytical Chemistry</i> , 2014 , 86, 4047-51	7.8	59	

516	Gold nanoparticles-based nanoconjugates for enhanced enzyme cascade and glucose sensing. <i>Analyst, The</i> , 2012 , 137, 4435-9	5	59
515	Wiring electrons of cytochrome c with silver nanoparticles in layered films. <i>ChemPhysChem</i> , 2003 , 4, 1	36 4. 6	59
514	Potential diagnostic applications of biosensors: current and future directions. <i>International Journal of Nanomedicine</i> , 2006 , 1, 433-40	7.3	59
513	Dynamic and quantitative control of the DNA-mediated growth of gold plasmonic nanostructures. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8338-42	16.4	58
512	Gold nanoparticlebased optical probes for target-responsive DNA structures 2008, 41, 37-41		58
511	DNA-based plasmonic nanostructures. <i>Materials Today</i> , 2015 , 18, 326-335	21.8	57
510	A highly sensitive chemiluminescence sensor for detecting mercury (II) ions: a combination of Exonuclease III-aided signal amplification and graphene oxide-assisted background reduction. <i>Science China Chemistry</i> , 2015 , 58, 514-518	7.9	57
509	Single copy-sensitive electrochemical assay for circulating methylated DNA in clinical samples with ultrahigh specificity based on a sequential discrimination-amplification strategy. <i>Chemical Science</i> , 2017 , 8, 4764-4770	9.4	55
508	A MoSEbased system for efficient immobilization of hemoglobin and biosensing applications. <i>Nanotechnology</i> , 2015 , 26, 274005	3.4	55
507	Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations. <i>Scientific Reports</i> , 2014 , 4, 5920	4.9	55
506	Recent advances in two-dimensional nanomaterials-based electrochemical sensors for environmental analysis. <i>Green Energy and Environment</i> , 2018 , 3, 97-106	5.7	55
505	Treating Acute Kidney Injury with Antioxidative Black Phosphorus Nanosheets. <i>Nano Letters</i> , 2020 , 20, 1447-1454	11.5	54
504	Physical and biochemical insights on DNA structures in artificial and living systems. <i>Accounts of Chemical Research</i> , 2014 , 47, 1720-30	24.3	54
503	Highly sensitive detection of telomerase activity in tumor cells by cascade isothermal signal amplification based on three-way junction and base-stacking hybridization. <i>Biosensors and Bioelectronics</i> , 2013 , 41, 764-70	11.8	54
502	RCA strands as scaffolds to create nanoscale shapes by a few staple strands. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2959-62	16.4	54
501	Nano rolling-circle amplification for enhanced SERS hot spots in protein microarray analysis. <i>Analytical Chemistry</i> , 2012 , 84, 9139-45	7.8	54
500	Gold-Nanoparticle-Based Multicolor Nanobeacons for Sequence-Specific DNA Analysis. <i>Angewandte Chemie</i> , 2009 , 121, 8826-8830	3.6	53
499	DNA-gold nanoparticle conjugates-based nanoplasmonic probe for specific differentiation of cell types. <i>Analytical Chemistry</i> , 2014 , 86, 3227-31	7.8	52

498	Ultrasensitive IgG quantification using DNA nano-pyramids. NPG Asia Materials, 2014, 6, e112-e112	10.3	52
497	Pattern recognition analysis of proteins using DNA-decorated catalytic gold nanoparticles. <i>Small</i> , 2013 , 9, 2844-9	11	52
496	Amplified fluorescent recognition of g-quadruplex folding with a cationic conjugated polymer and DNA intercalator. <i>ACS Applied Materials & amp; Interfaces</i> , 2010 , 2, 3211-6	9.5	52
495	An on-nanoparticle rolling-circle amplification platform for ultrasensitive protein detection in biological fluids. <i>Small</i> , 2010 , 6, 2520-5	11	52
494	Nanodiamond autophagy inhibitor allosterically improves the arsenical-based therapy of solid tumors. <i>Nature Communications</i> , 2018 , 9, 4347	17.4	52
493	DNA nanostructure-based ultrasensitive electrochemical microRNA biosensor. <i>Methods</i> , 2013 , 64, 276-8	3 2 4.6	51
492	Molecular threading and tunable molecular recognition on DNA origami nanostructures. <i>Journal of the American Chemical Society</i> , 2013 , 135, 12172-5	16.4	51
491	Ligase-based multiple DNA analysis by using an electrochemical sensor array. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 1209-12	11.8	51
490	Multi-functional crosslinked Au nanoaggregates for the amplified optical DNA detection. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 3311-5	11.8	51
489	Ultrasensitive Detection of Dual Cancer Biomarkers with Integrated CMOS-Compatible Nanowire Arrays. <i>Analytical Chemistry</i> , 2015 , 87, 11203-8	7.8	50
488	Targeted Imaging of Brain Tumors with a Framework Nucleic Acid Probe. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 3414-3420	9.5	50
487	A power-free microfluidic chip for SNP genotyping using graphene oxide and a DNA intercalating dye. <i>Chemical Communications</i> , 2013 , 49, 3125-7	5.8	50
486	Implementing digital computing with DNA-based switching circuits. <i>Nature Communications</i> , 2020 , 11, 121	17.4	50
485	Programming Cell-Cell Communications with Engineered Cell Origami Clusters. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8800-8808	16.4	50
484	Activity modulation and allosteric control of a scaffolded DNAzyme using a dynamic DNA nanostructure. <i>Chemical Science</i> , 2016 , 7, 1200-1204	9.4	49
483	Stochastic DNA Walkers in Droplets for Super-Multiplexed Bacterial Phenotype Detection. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 15448-15454	16.4	49
482	Nanotube-based colorimetric probe for ultrasensitive detection of ataxia telangiectasia mutated protein. <i>Analytical Chemistry</i> , 2011 , 83, 9191-6	7.8	49
481	Modulation of DNA polymerases with gold nanoparticles and their applications in hot-start PCR. <i>Small</i> , 2009 , 5, 2597-600	11	49

480	Combustion Fabrication of Nanoporous Graphene for Ionic Separation Membranes. <i>Advanced Functional Materials</i> , 2018 , 28, 1805026	15.6	49
479	In Situ Spatial Complementation of Aptamer-Mediated Recognition Enables Live-Cell Imaging of Native RNA Transcripts in Real Time. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 972-976	16.4	48
478	Nanoplasmonic detection of adenosine triphosphate by aptamer regulated self-catalytic growth of single gold nanoparticles. <i>Chemical Communications</i> , 2012 , 48, 9574-6	5.8	48
477	Catalytic Gold Nanoparticles for Nanoplasmonic Detection of DNA Hybridization. <i>Angewandte Chemie</i> , 2011 , 123, 12200-12204	3.6	48
476	Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA. <i>ACS Nano</i> , 2018 , 12, 7093-7099	16.7	47
475	Quadratic isothermal amplification for the detection of microRNA. <i>Nature Protocols</i> , 2014 , 9, 597-607	18.8	47
474	Akt signaling-associated metabolic effects of dietary gold nanoparticles in Drosophila. <i>Scientific Reports</i> , 2012 , 2, 563	4.9	47
473	A nano- and micro- integrated protein chip based on quantum dot probes and a microfluidic network. <i>Nano Research</i> , 2008 , 1, 490-496	10	47
472	Programming Drug Delivery Kinetics for Active Burst Release with DNA Toehold Switches. <i>Journal of the American Chemical Society</i> , 2019 , 141, 20354-20364	16.4	47
471	Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control. <i>Lab on A Chip</i> , 2013 , 13, 3351-4	7.2	46
470	Gold nanoparticle-based low limit of detection Love wave biosensor for carcinoembryonic antigens. <i>Biosensors and Bioelectronics</i> , 2017 , 95, 48-54	11.8	45
469	A surface-initiated enzymatic polymerization strategy for electrochemical DNA sensors. <i>Biosensors and Bioelectronics</i> , 2013 , 41, 526-31	11.8	45
468	Tuning the redox and enzymatic activity of glucose oxidase in layered organic films and its application in glucose biosensors. <i>Analytical Biochemistry</i> , 2004 , 329, 85-90	3.1	45
467	Graphene oxide-assisted nucleic acids assays using conjugated polyelectrolytes-based fluorescent signal transduction. <i>Analytical Chemistry</i> , 2015 , 87, 3877-83	7.8	44
466	Programming bulk enzyme heterojunctions for biosensor development with tetrahedral DNA framework. <i>Nature Communications</i> , 2020 , 11, 838	17.4	44
465	Biomacromolecular nanostructures-based interfacial engineering: from precise assembly to precision biosensing. <i>National Science Review</i> , 2018 , 5, 740-755	10.8	44
464	Imaging of Colorectal Cancers Using Activatable Nanoprobes with Second Near-Infrared Window Emission. <i>Angewandte Chemie</i> , 2018 , 130, 3688-3692	3.6	44
463	DNA Nanotweezers and Graphene Transistor Enable Label-Free Genotyping. <i>Advanced Materials</i> , 2018 , 30, e1802440	24	44

462	Long-term effects of nanoparticles on nutrition and metabolism. Small, 2014, 10, 3603-11	11	44
461	Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n-and p-type silicon nanowire sensor arrays. <i>Nanoscale</i> , 2014 , 6, 13036-42	7.7	44
460	Nanoscale delivery systems for cancer immunotherapy. <i>Materials Horizons</i> , 2018 , 5, 344-362	14.4	43
459	Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 2295-302	9.5	43
458	Portable detection of clenbuterol using a smartphone-based electrochemical biosensor with electric field-driven acceleration. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 781, 339-344	4.1	43
457	Effective immobilization of Au nanoparticles on TiO loaded graphene for a novel sandwich-type immunosensor. <i>Biosensors and Bioelectronics</i> , 2018 , 102, 301-306	11.8	43
456	Autophagy-sensitized cytotoxicity of quantum dots in PC12 cells. <i>Advanced Healthcare Materials</i> , 2014 , 3, 354-9	10.1	42
455	Cellular uptake and cytotoxic evaluation of fullerenol in different cell lines. <i>Toxicology</i> , 2010 , 269, 155-9	9 4.4	42
454	High-sensitivity pesticide detection via silicon nanowires-supported acetylcholinesterase-based electrochemical sensors. <i>Applied Physics Letters</i> , 2008 , 93, 023113	3.4	42
453	Programming DNA origami patterning with non-canonical DNA-based metallization reactions. <i>Nature Communications</i> , 2019 , 10, 5597	17.4	42
452	Valence-Engineering of Quantum Dots Using Programmable DNA Scaffolds. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16077-16081	16.4	41
451	Engineered Bacillus subtilis biofilms as living glues. <i>Materials Today</i> , 2019 , 28, 40-48	21.8	41
450	Mismatch extension of DNA polymerases and high-accuracy single nucleotide polymorphism diagnostics by gold nanoparticle-improved isothermal amplification. <i>Analytical Chemistry</i> , 2015 , 87, 871	8 ⁷ -23	41
449	In vivo behavior of near infrared-emitting quantum dots. <i>Biomaterials</i> , 2013 , 34, 4302-8	15.6	41
448	Meta-DNA structures. <i>Nature Chemistry</i> , 2020 , 12, 1067-1075	17.6	41
447	Nanoplasmonic imaging of latent fingerprints with explosive RDX residues. <i>Analytical Chemistry</i> , 2015 , 87, 9403-7	7.8	40
446	A DNA-based system for selecting and displaying the combined result of two input variables. <i>Nature Communications</i> , 2015 , 6, 10089	17.4	40
445	Excessive sodium ions delivered into cells by nanodiamonds: implications for tumor therapy. <i>Small</i> , 2012 , 8, 1771-9	11	40

444	Carbon nanotubes multifunctionalized by rolling circle amplification and their application for highly sensitive detection of cancer markers. <i>Small</i> , 2013 , 9, 2595-601	11	40
443	Myelin Sheath as a Dielectric Waveguide for Signal Propagation in the Mid-Infrared to Terahertz Spectral Range. <i>Advanced Functional Materials</i> , 2019 , 29, 1807862	15.6	40
442	Chiral Metamolecules with Active Plasmonic Transition. ACS Nano, 2019, 13, 4826-4833	16.7	39
441	Guiding protein delivery into live cells using DNA-programmed membrane fusion. <i>Chemical Science</i> , 2018 , 9, 5967-5975	9.4	39
440	Programmable Engineering of a Biosensing Interface with Tetrahedral DNA Nanostructures for Ultrasensitive DNA Detection. <i>Angewandte Chemie</i> , 2015 , 127, 2179-2183	3.6	39
439	A silicon nanowire-based electrochemical glucose biosensor with high electrocatalytic activity and sensitivity. <i>Nanoscale</i> , 2010 , 2, 1704-7	7.7	39
438	Ultrastable, Highly Fluorescent, and Water-Dispersed Silicon-Based Nanospheres as Cellular Probes. <i>Angewandte Chemie</i> , 2009 , 121, 134-138	3.6	39
437	Biomolecular sensing via coupling DNA-based recognition with gold nanoparticles. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 203001	3	39
436	Extracellular vesicles engineered with valency-controlled DNA nanostructures deliver CRISPR/Cas9 system for gene therapy. <i>Nucleic Acids Research</i> , 2020 , 48, 8870-8882	20.1	39
435	Sodium alginate-functionalized nanodiamonds as sustained chemotherapeutic drug-release vectors. <i>Carbon</i> , 2016 , 97, 78-86	10.4	38
434	Antisuperbug Cotton Fabric with Excellent Laundering Durability. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 19866-71	9.5	38
433	One-step highly sensitive florescence detection of T4 polynucleotide kinase activity and biological small molecules by ligation-nicking coupled reaction-mediated signal amplification. <i>Biosensors and Bioelectronics</i> , 2013 , 47, 218-24	11.8	38
432	Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	38
431	Analysis of telomerase activity based on a spired DNA tetrahedron TS primer. <i>Biosensors and Bioelectronics</i> , 2015 , 67, 364-9	11.8	38
430	Sequence-specific DNA detection by using biocatalyzed electrochemiluminescence and non-fouling surfaces. <i>Biosensors and Bioelectronics</i> , 2009 , 25, 368-72	11.8	38
429	Biomimetic DNA Nanotubes: Nanoscale Channel Design and Applications. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8996-9011	16.4	38
428	Dynamic Modulation of DNA Hybridization Using Allosteric DNA Tetrahedral Nanostructures. <i>Analytical Chemistry</i> , 2016 , 88, 8043-9	7.8	37
427	Gating of redox currents at gold nanoelectrodes via DNA hybridization. <i>Advanced Materials</i> , 2010 , 22, 2148-50	24	37

(2018-2016)

426	Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain. <i>Scientific Reports</i> , 2016 , 6, 19714	4.9	37
425	Graphene-based nanomaterials in biosystems. <i>Nano Research</i> , 2019 , 12, 247-264	10	37
424	Electrochemical Sensors Using Two-Dimensional Layered Nanomaterials. <i>Electroanalysis</i> , 2015 , 27, 1062	2-31072	36
423	Docking of Antibodies into the Cavities of DNA Origami Structures. <i>Angewandte Chemie -</i> International Edition, 2017 , 56, 14423-14427	16.4	36
422	DNA origami cryptography for secure communication. <i>Nature Communications</i> , 2019 , 10, 5469	17.4	36
421	DNA-based artificial molecular signaling system that mimics basic elements of reception and response. <i>Nature Communications</i> , 2020 , 11, 978	17.4	35
420	DNA Nanostructure-Based Systems for Intelligent Delivery of Therapeutic Oligonucleotides. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701153	10.1	35
419	Ultrasensitive and selective detection of nicotinamide adenine dinucleotide by target-triggered ligation-rolling circle amplification. <i>Chemical Communications</i> , 2012 , 48, 3354-6	5.8	35
418	An Organelle-Specific Nanozyme for Diabetes Care in Genetically or Diet-Induced Models. <i>Advanced Materials</i> , 2020 , 32, e2003708	24	35
417	Hierarchical three-dimensional branched hematite nanorod arrays with enhanced mid-visible light absorption for high-efficiency photoelectrochemical water splitting. <i>Nanoscale</i> , 2016 , 8, 12697-701	7.7	34
416	High-Sensitivity and High-Efficiency Detection of DNA Hydroxymethylation in Genomic DNA by Multiplexing Electrochemical Biosensing. <i>Analytical Chemistry</i> , 2016 , 88, 3476-80	7.8	34
415	Dark-field microscopy in imaging of plasmon resonant nanoparticles. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 124, 111-7	6	34
414	Nitric oxide biosensors based on Hb/phosphatidylcholine films. <i>Analytical Sciences</i> , 2002 , 18, 129-32	1.7	34
413	Direct electrochemical characterization of the interaction between haemoglobin and nitric oxide. <i>Physical Chemistry Chemical Physics</i> , 2000 , 2, 4409-4413	3.6	34
412	Metal-Organic Framework Nanoparticles for Ameliorating Breast Cancer-Associated Osteolysis. <i>Nano Letters</i> , 2020 , 20, 829-840	11.5	34
411	Mechanically Strong Globular-Protein-Based Fibers Obtained Using a Microfluidic Spinning Technique. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4344-4348	16.4	34
410	Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity. <i>Particle and Fibre Toxicology</i> , 2015 , 12, 2	8.4	33
409	Advances in Nanowire Transistor-Based Biosensors. <i>Small Methods</i> , 2018 , 2, 1700263	12.8	33

408	Graphene-based nanoprobes and a prototype optical biosensing platform. <i>Biosensors and Bioelectronics</i> , 2013 , 50, 251-5	11.8	33
407	Polymerase/nicking enzyme synergetic isothermal quadratic DNA machine and its application for one-step amplified biosensing of lead (II) ions at femtomole level and DNA methyltransferase. <i>NPG Asia Materials</i> , 2014 , 6, e131-e131	10.3	33
406	A portable and power-free microfluidic device for rapid and sensitive lead (Pb2+) detection. <i>Sensors</i> , 2012 , 12, 9467-75	3.8	33
405	Nucleic Acids Analysis. <i>Science China Chemistry</i> , 2020 , 64, 1-33	7.9	33
404	Elaborately designed diblock nanoprobes for simultaneous multicolor detection of microRNAs. <i>Nanoscale</i> , 2015 , 7, 15822-9	7.7	32
403	Visualizing glioma margins by real-time tracking of Eglutamyltranspeptidase activity. <i>Biomaterials</i> , 2018 , 173, 1-10	15.6	32
402	Polyvalent DNA-graphene nanosheets "click" conjugates. <i>Nanoscale</i> , 2012 , 4, 394-9	7.7	32
401	An Exonuclease III-Powered, On-Particle Stochastic DNA Walker. <i>Angewandte Chemie</i> , 2017 , 129, 1881-1	18,864	31
400	Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting. <i>Advanced Science</i> , 2015 , 2, 1500005	13.6	31
399	Aptamer-initiated on-particle template-independent enzymatic polymerization (aptamer-OTEP) for electrochemical analysis of tumor biomarkers. <i>Biosensors and Bioelectronics</i> , 2016 , 86, 536-541	11.8	31
398	Unraveling the role of hydrogen peroxide in Bynuclein aggregation using an ultrasensitive nanoplasmonic probe. <i>Analytical Chemistry</i> , 2015 , 87, 1968-73	7.8	31
397	Novel rolling circle amplification and DNA origami-based DNA belt-involved signal amplification assay for highly sensitive detection of prostate-specific antigen (PSA). <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 20372-7	9.5	31
396	Single-Particle Tracking and Modulation of Cell Entry Pathways of a Tetrahedral DNA Nanostructure in Live Cells. <i>Angewandte Chemie</i> , 2014 , 126, 7879-7884	3.6	31
395	Fabrication of Ultrathin, Protein-containing Films by Layer-by-Layer Assembly and Electrochemical Characterization of Hemoglobin Entrapped in the Film. <i>Chemistry Letters</i> , 2003 , 32, 296-297	1.7	31
394	DNA Framework-Encoded Mineralization of Calcium Phosphate. <i>CheM</i> , 2020 , 6, 472-485	16.2	31
393	Improving performance of MoS2-based electrochemical sensors by decorating noble metallic nanoparticles on the surface of MoS2 nanosheet. <i>RSC Advances</i> , 2016 , 6, 76614-76620	3.7	31
392	DNA-Origami-Based Assembly of Anisotropic Plasmonic Gold Nanostructures. <i>Small</i> , 2017 , 13, 1603991	11	30
391	DNA-Edited Ligand Positioning on Red Blood Cells to Enable Optimized T Cell Activation for Adoptive Immunotherapy. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14842-14853	16.4	30

390	Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2014 , 10, 515-24	6	30
389	Template-free synthesis of hematite photoanodes with nanostructured ATO conductive underlayer for PEC water splitting. <i>ACS Applied Materials & mp; Interfaces</i> , 2014 , 6, 36-40	9.5	30
388	Cytotoxicity of phenol red in toxicity assays for carbon nanoparticles. <i>International Journal of Molecular Sciences</i> , 2012 , 13, 12336-48	6.3	30
387	Terahertz Wave Enhances Permeability of the Voltage-Gated Calcium Channel. <i>Journal of the American Chemical Society</i> , 2021 , 143, 4311-4318	16.4	30
386	Deciphering active biocompatibility of iron oxide nanoparticles from their intrinsic antagonism. <i>Nano Research</i> , 2018 , 11, 2746-2755	10	30
385	Graphene oxide-silver nanocomposites modulate biofilm formation and extracellular polymeric substance (EPS) production. <i>Nanoscale</i> , 2018 , 10, 19603-19611	7.7	30
384	Coordination-mediated programmable assembly of unmodified oligonucleotides on plasmonic silver nanoparticles. <i>ACS Applied Materials & District Research</i> , 7, 11047-52	9.5	29
383	Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes. <i>Nanoscale</i> , 2015 , 7, 18671-6	7.7	29
382	Constructing Higher-Order DNA Nanoarchitectures with Highly Purified DNA Nanocages. <i>ACS Applied Materials & DNA Nanocages</i> , 2015 , 7, 13174-9	9.5	29
381	Reactivating Catalytic Surface: Insights into the Role of Hot Holes in Plasmonic Catalysis. <i>Small</i> , 2018 , 14, e1703510	11	29
380	Nanoplasmonic Imaging of Latent Fingerprints and Identification of Cocaine. <i>Angewandte Chemie</i> , 2013 , 125, 11756-11759	3.6	29
379	Highly sensitive recognition of Pb(2+) using Pb(2+) triggered exonuclease aided DNA recycling. <i>Biosensors and Bioelectronics</i> , 2013 , 47, 520-3	11.8	29
378	Tryptamine functionalized reduced graphene oxide for label-free DNA impedimetric biosensing. <i>Biosensors and Bioelectronics</i> , 2014 , 60, 161-6	11.8	29
377	DNA-bridged bioconjugation of fluorescent quantum dots for highly sensitive microfluidic protein chips. <i>Chemical Communications</i> , 2010 , 46, 6126-8	5.8	29
376	Ultra-photostable, non-cytotoxic, and highly fluorescent quantum nanospheres for long-term, high-specificity cell imaging. <i>Biomaterials</i> , 2011 , 32, 2133-40	15.6	29
375	Mechanism of the interaction between Au nanoparticles and polymerase in nanoparticle PCR. <i>Science Bulletin</i> , 2007 , 52, 2345-2349		29
374	Intracellular Entropy-Driven Multi-Bit DNA Computing for Tumor Progression Discrimination. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 13267-13272	16.4	28
373	Metal ion-mediated assembly of DNA nanostructures for cascade fluorescence resonance energy transfer-based fingerprint analysis. <i>Analytical Chemistry</i> , 2014 , 86, 7084-7	7.8	28

372	DNA hybridization "turns on" electro-catalysis at gold electrodes. <i>Chemical Communications</i> , 2007 , 115	4-6 .8	28
371	Evaluation of gold nanoparticles as the additive in real-time polymerase chain reaction with SYBR Green I dye. <i>Nanotechnology</i> , 2008 , 19, 255101	3.4	28
370	Sensing phenothiazine drugs at a gold electrode co-modified with DNA and gold nanoparticles. <i>Analytical Sciences</i> , 2003 , 19, 653-7	1.7	28
369	An Unmediated Hydrogen Peroxide Sensor Based on a Hemoglobin-sds Film Modified Electrode. <i>Analytical Letters</i> , 2000 , 33, 2631-2644	2.2	28
368	Real-Time Imaging of Endocytosis and Intracellular Trafficking of Semiconducting Polymer Dots. <i>ACS Applied Materials & Dots amp; Interfaces</i> , 2017 , 9, 21200-21208	9.5	27
367	Nitidine chloride-assisted bio-functionalization of reduced graphene oxide by bovine serum albumin for impedimetric immunosensing. <i>Biosensors and Bioelectronics</i> , 2016 , 79, 536-42	11.8	27
366	Organizing End-Site-Specific SWCNTs in Specific Loci Using DNA. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11923-11928	16.4	27
365	Encoding Carbon Nanotubes with Tubular Nucleic Acids for Information Storage. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17861-17866	16.4	27
364	Synthesis of polymer-protected graphene by solvent-assisted thermal reduction process. <i>Nanotechnology</i> , 2011 , 22, 345601	3.4	27
363	Enhanced specificity and efficiency of polymerase chain reactions using poly(amidoamine) dendrimers and derivatives. <i>Analyst, The</i> , 2009 , 134, 87-92	5	27
362	Effect of dimethyl sulfoxide on the electron transfer reactivity of hemoglobin. <i>Bioelectrochemistry</i> , 2001 , 54, 49-51	5.6	27
361	Designer DNA nanostructures for therapeutics. <i>CheM</i> , 2021 , 7, 1156-1179	16.2	27
360	Capturing transient antibody conformations with DNA origami epitopes. <i>Nature Communications</i> , 2020 , 11, 3114	17.4	26
359	DNA orientation-specific adhesion and patterning of living mammalian cells on self-assembled DNA monolayers. <i>Chemical Science</i> , 2016 , 7, 2722-2727	9.4	26
358	Ultrasensitive electrochemical DNA sensor based on the target induced structural switching and surface-initiated enzymatic polymerization. <i>Biosensors and Bioelectronics</i> , 2014 , 55, 231-6	11.8	26
357	Single-nucleotide polymorphism genotyping using a novel multiplexed electrochemical biosensor with nonfouling surface. <i>Biosensors and Bioelectronics</i> , 2013 , 42, 516-21	11.8	26
356	A graphene-based platform for fluorescent detection of SNPs. <i>Analyst, The</i> , 2013 , 138, 2678-82	5	26

(2021-2004)

354	Highly sensitive voltammetric biosensor for nitric oxide based on its high affinity with hemoglobin. <i>Analytica Chimica Acta</i> , 2004 , 523, 225-228	6.6	26
353	An unmediated hydrogen peroxide biosensor based on hemoglobin incorporated in a montmorillonite membrane. <i>Analyst, The</i> , 2001 , 126, 1086-9	5	26
352	Molecular Threading-Dependent Mass Transport in Paper Origami for Single-Step Electrochemical DNA Sensors. <i>Nano Letters</i> , 2019 , 19, 369-374	11.5	26
351	Encapsulation and release of living tumor cells using hydrogels with the hybridization chain reaction. <i>Nature Protocols</i> , 2020 , 15, 2163-2185	18.8	25
350	DNA Origami-Enabled Engineering of Ligand-Drug Conjugates for Targeted Drug Delivery. <i>Small</i> , 2020 , 16, e1904857	11	25
349	DNA Nanoribbon-Templated Self-Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11836-11844	16.4	25
348	Semiconducting Polymer Nanocavities: Porogenic Synthesis, Tunable Host-Guest Interactions, and Enhanced Drug/siRNA Delivery. <i>Small</i> , 2018 , 14, e1800239	11	25
347	Autophagy and lysosomal dysfunction: A new insight into mechanism of synergistic pulmonary toxicity of carbon black-metal ions co-exposure. <i>Carbon</i> , 2017 , 111, 322-333	10.4	25
346	A methylation-stimulated DNA machine: an autonomous isothermal route to methyltransferase activity and inhibition analysis. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 399, 3459-64	4.4	25
345	Inhibitory impact of 3'-terminal 2'-O-methylated small silencing RNA on target-primed polymerization and unbiased amplified quantification of the RNA in Arabidopsis thaliana. <i>Analytical Chemistry</i> , 2015 , 87, 8758-64	7.8	24
344	Nanoprobes for super-resolution fluorescence imaging at the nanoscale. <i>Science China Chemistry</i> , 2014 , 57, 100-106	7.9	24
343	Highly sensitive and selective detection of silver(I) in aqueous solution with silver(I)-specific DNA and Sybr Green I. <i>Analyst, The</i> , 2013 , 138, 2057-60	5	24
342	Diagnosis of schistosomiasis japonica with interfacial co-assembly-based multi-channel electrochemical immunosensor arrays. <i>Scientific Reports</i> , 2013 , 3, 1789	4.9	24
341	A quartz crystal microbalance-based molecular ruler for biopolymers. <i>Chemical Communications</i> , 2010 , 46, 949-51	5.8	24
340	Iodide Modified Silver Electrode and Its Application to the Electroanalysis of Hemoglobin. <i>Electroanalysis</i> , 2000 , 12, 205-208	3	24
339	Voltammetric response and determination of DNA with a silver electrode. <i>Analytical Biochemistry</i> , 1999 , 271, 1-7	3.1	24
338	Nanoplasmonic Biological Sensing and Imaging. <i>Acta Chimica Sinica</i> , 2017 , 75, 1036	3.3	24
337	DNA nanotechnology-empowered nanoscopic imaging of biomolecules. <i>Chemical Society Reviews</i> , 2021 , 50, 5650-5667	58.5	24

336	Hetero-assembly of gold nanoparticles on a DNA origami template. <i>Science China Chemistry</i> , 2016 , 59, 730-734	7.9	23
335	Fractal Nanoplasmonic Labels for Supermultiplex Imaging in Single Cells. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11938-11946	16.4	23
334	Fluorescent In Situ Targeting Probes for Rapid Imaging of Ovarian-Cancer-Specific EGlutamyltranspeptidase. <i>Angewandte Chemie</i> , 2015 , 127, 7457-7461	3.6	23
333	Growth and Origami Folding of DNA on Nanoparticles for High-Efficiency Molecular Transport in Cellular Imaging and Drug Delivery. <i>Angewandte Chemie</i> , 2015 , 127, 2461-2465	3.6	23
332	Self-assembly of DNA-based drug delivery nanocarriers with rolling circle amplification. <i>Methods</i> , 2014 , 67, 198-204	4.6	23
331	A Conjugated Polymer-Based Electrochemical DNA Sensor: Design and Application of a Multi-Functional and Water-Soluble Conjugated Polymer. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 1489-1494	4.8	23
330	Nanogold-assisted multi-round polymerase chain reaction (PCR). <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 4428-33	1.3	23
329	Electrochemical investigations of baicalin and DNA-baicalin interactions. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 379, 283-6	4.4	23
328	Incorporation of horseradish peroxidase in a Kieselguhr membrane and the application to a mediator-free hydrogen peroxide sensor. <i>Analytical Sciences</i> , 2001 , 17, 273-6	1.7	23
327	Epigenetic Remodeling Hydrogel Patches for Multidrug-Resistant Triple-Negative Breast Cancer. <i>Advanced Materials</i> , 2021 , 33, e2100949	24	23
326	Nucleic Acid Tests for Clinical Translation. <i>Chemical Reviews</i> , 2021 , 121, 10469-10558	68.1	23
325	Silica Nanoparticles Target a Wnt Signal Transducer for Degradation and Impair Embryonic Development in Zebrafish. <i>Theranostics</i> , 2016 , 6, 1810-20	12.1	23
324	Poly-adenine-mediated spherical nucleic acids for strand displacement-based DNA/RNA detection. <i>Biosensors and Bioelectronics</i> , 2019 , 127, 85-91	11.8	23
323	Mechanical Stress-Dependent Autophagy Component Release via Extracellular Nanovesicles in Tumor Cells. <i>ACS Nano</i> , 2019 , 13, 4589-4602	16.7	22
322	Stochastic DNA Walkers in Droplets for Super-Multiplexed Bacterial Phenotype Detection. <i>Angewandte Chemie</i> , 2019 , 131, 15594-15600	3.6	22
321	Solidifying framework nucleic acids with silica. <i>Nature Protocols</i> , 2019 , 14, 2416-2436	18.8	22
320	A Silicon Nanowire-Based Electrochemical Sensor with High Sensitivity and Electrocatalytic Activity. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 326-331	3.1	22
319	A cancer protein microarray platform using antibody fragments and its clinical applications. <i>Molecular BioSystems</i> , 2007 , 3, 151-8		22

(2020-2005)

318	Electrochemical investigation of redox thermodynamics of immobilized myoglobin: ionic and ligation effects. <i>Langmuir</i> , 2005 , 21, 375-8	4	22
317	Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples <i>Nature Biomedical Engineering</i> , 2022 ,	19	22
316	Single-Step Organization of Plasmonic Gold Metamaterials with Self-Assembled DNA Nanostructures. <i>Research</i> , 2019 , 2019, 7403580	7.8	22
315	DNA Origami-Based Nanoprinting for the Assembly of Plasmonic Nanostructures with Single-Molecule Surface-Enhanced Raman Scattering. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11695-11701	16.4	22
314	Superresolution imaging of telomeres with continuous wave stimulated emission depletion (STED) microscope. <i>Science China Chemistry</i> , 2016 , 59, 1519-1524	7.9	22
313	Assembly Pathway Selection with DNA Reaction Circuits for Programming Multiple Cell-Cell Interactions. <i>Journal of the American Chemical Society</i> , 2021 , 143, 3448-3454	16.4	22
312	Virus-Mimicking Cell Capture Using Heterovalency Magnetic DNA Nanoclaws. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 12244-12252	9.5	21
311	Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors. <i>Methods</i> , 2013 , 63, 212-8	4.6	21
310	Humidity-Responsive Single-Nanoparticle-Layer Plasmonic Films. Advanced Materials, 2017, 29, 160679	624	21
309	A colorimetric strategy based on a water-soluble conjugated polymer for sensing pH-driven conformational conversion of DNA i-motif structure. <i>Biosensors and Bioelectronics</i> , 2010 , 25, 1838-42	11.8	21
308	Solubilization of Single-walled Carbon Nanotubes with Single- stranded DNA Generated from Asymmetric PCR. <i>International Journal of Molecular Sciences</i> , 2007 , 8, 705-713	6.3	21
307	Nanoparticle PCR: Nanogold-Assisted PCR with Enhanced Specificity. <i>Angewandte Chemie</i> , 2005 , 117, 5230-5233	3.6	21
306	pH- and miRNA-Responsive DNA-Tetrahedra/Metal-Organic Framework Conjugates: Functional Sense-and-Treat Carriers. <i>ACS Nano</i> , 2021 , 15, 6645-6657	16.7	21
305	Probing the Intracellular Dynamics of Nitric Oxide and Hydrogen Sulfide Using an Activatable NIR II Fluorescence Reporter. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 8450-8454	16.4	21
304	Robust Biological Fibers Based on Widely Available Proteins: Facile Fabrication and Suturing Application. <i>Small</i> , 2020 , 16, e1907598	11	21
303	Graphene Nanoprobes for Real-Time Monitoring of Isothermal Nucleic Acid Amplification. <i>ACS Applied Materials & Discours (Materials & Discours)</i> , 15245-15253	9.5	20
302	Programming Motions of DNA Origami Nanomachines. <i>Small</i> , 2019 , 15, e1900013	11	20
301	Programming Switchable Transcription of Topologically Constrained DNA. <i>Journal of the American Chemical Society</i> , 2020 , 142, 10739-10746	16.4	20

300	DNA Framework-Based Topological Cell Sorters. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10406-10410	16.4	20
299	Near-IR emissive rare-earth nanoparticles for guided surgery. <i>Theranostics</i> , 2020 , 10, 2631-2644	12.1	20
298	Multiplexed electrochemical DNA sensor for single-nucleotide polymorphism typing by using oligonucleotide-incorporated nonfouling surfaces. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 6703-6	3.4	20
297	An easy and rapid method to determine aristolochic acids I and II with high sensitivity. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 378, 388-90	4.4	20
296	Photoluminescence Quenching of Water-Soluble Conjugated Polymers by Viologen Derivatives: Effect of Hydrophobicity. <i>Langmuir</i> , 2003 , 19, 3554-3556	4	20
295	Tuning backbones and side-chains of cationic conjugated polymers for optical signal amplification of fluorescent DNA detection. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 2973-8	11.8	19
294	Programmable Live-Cell CRISPR Imaging with Toehold-Switch-Mediated Strand Displacement. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20612-20618	16.4	19
293	Optochemical Control of DNA-Switching Circuits for Logic and Probabilistic Computation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3397-3401	16.4	19
292	Serum protein corona-responsive autophagy tuning in cells. <i>Nanoscale</i> , 2018 , 10, 18055-18063	7.7	19
291	Clamped Hybridization Chain Reactions for the Self-Assembly of Patterned DNA Hydrogels. <i>Angewandte Chemie</i> , 2017 , 129, 2203-2207	3.6	18
290	The Inhibition Effect of Graphene Oxide Nanosheets on the Development of Streptococcus mutans Biofilms. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1700001	3.1	18
289	Unraveling Cell-Type-Specific Targeted Delivery of Membrane-Camouflaged Nanoparticles with Plasmonic Imaging. <i>Nano Letters</i> , 2020 , 20, 5228-5235	11.5	18
288	Differentiated Visualization of Single-Cell 5-Hydroxymethylpyrimidines with Microfluidic Hydrogel Encoding. <i>Journal of the American Chemical Society</i> , 2020 , 142, 2889-2896	16.4	18
287	Necessary Experimental Conditions for Single-Shot Diffraction Imaging of DNA-Based Structures with X-ray Free-Electron Lasers. <i>ACS Nano</i> , 2018 , 12, 7509-7518	16.7	18
286	Conjugation of dexamethasone to C60 for the design of an anti-inflammatory nanomedicine with reduced cellular apoptosis. <i>ACS Applied Materials & Design Section</i> , 1985, 1985, 1985, 1985, 2013, 2015,	9.5	18
285	In situ monitoring of single molecule binding reactions with time-lapse atomic force microscopy on functionalized DNA origami. <i>Nanoscale</i> , 2011 , 3, 2481-4	7.7	18
284	Functional DNA Structures and Their Biomedical Applications. CCS Chemistry, 2020, 2, 707-728	7.2	18
283	Significantly Improving the Bioefficacy for Rheumatoid Arthritis with Supramolecular Nanoformulations. <i>Advanced Materials</i> , 2021 , 33, e2100098	24	18

282	X-ray-Based Techniques to Study the Nano-Bio Interface. ACS Nano, 2021, 15, 3754-3807	16.7	18
281	Programming chain-growth copolymerization of DNA hairpin tiles for in-vitro hierarchical supramolecular organization. <i>Nature Communications</i> , 2019 , 10, 1006	17.4	18
280	Engineering electrochemical interface for biomolecular sensing. <i>Current Opinion in Electrochemistry</i> , 2019 , 14, 71-80	7.2	18
279	Encoding DNA Frameworks for Amplified Multiplexed Imaging of Intracellular microRNAs. <i>Analytical Chemistry</i> , 2021 , 93, 2226-2234	7.8	18
278	Programming Niche Accessibility and In Vitro Stemness with Intercellular DNA Reactions. <i>Advanced Materials</i> , 2018 , 30, e1804861	24	18
277	Nanodiamond-based non-canonical autophagy inhibitor synergistically induces cell death in oxygen-deprived tumors. <i>Materials Horizons</i> , 2018 , 5, 1204-1210	14.4	18
276	Precisely Tailored DNA Nanostructures and their Theranostic Applications. <i>Chemical Record</i> , 2017 , 17, 1213-1230	6.6	17
275	Catalysis-Driven Self-Thermophoresis of Janus Plasmonic Nanomotors. <i>Angewandte Chemie</i> , 2017 , 129, 530-533	3.6	17
274	In situ terminus-regulated DNA hydrogelation for ultrasensitive on-chip microRNA assay. <i>Biosensors and Bioelectronics</i> , 2019 , 137, 263-270	11.8	17
273	Nanofabrication based on DNA nanotechnology. <i>Nano Today</i> , 2019 , 26, 123-148	17.9	17
272	Ultrafast DNA Sensors with DNA Framework-Bridged Hybridization Reactions. <i>Journal of the American Chemical Society</i> , 2020 , 142, 9975-9981	16.4	17
271	Identifying the Genotypes of Hepatitis B Virus (HBV) with DNA Origami Label. <i>Small</i> , 2018 , 14, 1701718	11	17
270	Multiple Amplified Electrochemical Detection of MicroRNA-21 Using Hierarchical Flower-like Gold Nanostructures Combined with Gold-enriched Hybridization Chain Reaction. <i>Electroanalysis</i> , 2018 , 30, 1349-1356	3	17
269	Charge Neutralization Drives the Shape Reconfiguration of DNA Nanotubes. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5418-5422	16.4	17
268	Quantum dots protect against MPP+-induced neurotoxicity in a cell model of Parkinson disease through autophagy induction. <i>Science China Chemistry</i> , 2016 , 59, 1486-1491	7.9	17
267	Programming DNA origami assembly for shape-resolved nanomechanical imaging labels. <i>Nature Protocols</i> , 2018 , 13, 1569-1585	18.8	17
266	Redox Engineering of Cytochrome c using DNA Nanostructure-Based Charged Encapsulation and Spatial Control. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 13874-13880	9.5	17
265	Imaging cellular uptake and intracellular distribution of TiO2 nanoparticles. <i>Analytical Methods</i> , 2013 , 5, 6611	3.2	17

264	Polyvalent Immunostimulatory Nanoagents with Self-Assembled CpG Oligonucleotide-Conjugated Gold Nanoparticles. <i>Angewandte Chemie</i> , 2012 , 124, 1228-1232	3.6	17
263	Comparative Studies on Electrocatalytic Activities of Chemically Reduced Graphene Oxide and Electrochemically Reduced Graphene Oxide Noncovalently Functionalized with Poly(methylene blue). Electroanalysis, 2010 , 22, 2862-2870	3	17
262	Genetic analysis with nanoPCR. Integrative Biology (United Kingdom), 2012, 4, 1155-63	3.7	16
261	Water-Dispersed Near-Infrared-Emitting Quantum Dots of Ultrasmall Sizes for In Vitro and In Vivo Imaging. <i>Angewandte Chemie</i> , 2011 , 123, 5813-5816	3.6	16
260	Gold nanoparticle-based sensing strategies for biomolecular detection. <i>Pure and Applied Chemistry</i> , 2010 , 82, 81-89	2.1	16
259	Nanoparticle-Assisted Alignment of Carbon Nanotubes on DNA Origami. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4892-4896	16.4	16
258	Blood exposure to graphene oxide may cause anaphylactic death in non-human primates. <i>Nano Today</i> , 2020 , 35, 100922	17.9	16
257	Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser. <i>Scientific Reports</i> , 2016 , 6, 34008	4.9	16
256	Probing of coupling effect induced plasmonic charge accumulation for water oxidation. <i>National Science Review</i> , 2021 , 8, nwaa151	10.8	16
255	Nanodiamonds Mediate Oral Delivery of Proteins for Stem Cell Activation and Intestinal Remodeling in Drosophila. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 18575-18583	9.5	15
254	Gold-Nanoparticle-Mediated Jigsaw-Puzzle-like Assembly of Supersized Plasmonic DNA Origami. <i>Angewandte Chemie</i> , 2015 , 127, 3009-3012	3.6	15
253	Encoding quantized fluorescence states with fractal DNA frameworks. <i>Nature Communications</i> , 2020 , 11, 2185	17.4	15
252	Synchrotron radiation X-ray fluorescence analysis of biodistribution and pulmonary toxicity of nanoscale titanium dioxide in mice. <i>Analyst, The</i> , 2013 , 138, 6511-6	5	15
251	Culture medium-associated physicochemical insights on the cytotoxicity of carbon nanomaterials. <i>Chemical Research in Toxicology</i> , 2015 , 28, 290-5	4	15
250	Bioinspired DNA Nanointerface with Anisotropic Aptamers for Accurate Capture of Circulating Tumor Cells. <i>Advanced Science</i> , 2020 , 7, 2000647	13.6	15
249	Directing curli polymerization with DNA origami nucleators. <i>Nature Communications</i> , 2019 , 10, 1395	17.4	14
248	A photoelectrochemical sensing strategy for biomolecular detection. <i>Science China Chemistry</i> , 2015 , 58, 834-834	7.9	14
247	In Situ Spatial Complementation of Aptamer-Mediated Recognition Enables Live-Cell Imaging of Native RNA Transcripts in Real Time. <i>Angewandte Chemie</i> , 2018 , 130, 984-988	3.6	14

(2020-2017)

246	Recognizing single phospholipid vesicle collisions on carbon fiber nanoelectrode. <i>Science China Chemistry</i> , 2017 , 60, 1474-1480	7.9	14
245	Artificial nano-bio-complexes: effects of nanomaterials on biomolecular reactions and applications in biosensing and detection. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 2247-55	1.3	14
244	Direct electrochemical characterization of Vitreoscilla sp. hemoglobin entrapped in organic films. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2003 , 1649, 123-6	4	14
243	Constructing Submonolayer DNA Origami Scaffold on Gold Electrode for Wiring of Redox Enzymatic Cascade Pathways. <i>ACS Applied Materials & Description</i> (2019), 11, 13881-13887	9.5	14
242	Achieving Lower Insertion Loss and Higher Sensitivity in a SAW Biosensor via Optimization of Waveguide and Microcavity Structures. <i>IEEE Sensors Journal</i> , 2017 , 17, 1608-1616	4	13
241	Rare Earth core/shell nanobarcodes for multiplexed trace biodetection. <i>Analytical Chemistry</i> , 2015 , 87, 5745-52	7.8	13
240	Near-Atomic Fabrication with Nucleic Acids. ACS Nano, 2020, 14, 1319-1337	16.7	13
239	DNA-Based Hybrid Hydrogels Sustain Water-Insoluble Ophthalmic Therapeutic Delivery against Allergic Conjunctivitis. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 26704-26710	9.5	13
238	Self-assembly of DNA Origami Using Rolling Circle Amplification Based DNA Nanoribbons. <i>Chinese Journal of Chemistry</i> , 2014 , 32, 137-141	4.9	13
237	Electrochemical investigation of the chloride effect on hemoglobin. <i>Bioelectrochemistry</i> , 2004 , 64, 23-7	5.6	13
236	An electrochemical investigation of ligand-binding abilities of film-entrapped myoglobin. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2003 , 1623, 29-32	4	13
235	DNA-Based Fabrication for Nanoelectronics. <i>Nano Letters</i> , 2020 , 20, 5604-5615	11.5	13
234	Engineering DNA nanostructures for siRNA delivery in plants. <i>Nature Protocols</i> , 2020 , 15, 3064-3087	18.8	13
233	Sequential Therapy of Acute Kidney Injury with a DNA Nanodevice. <i>Nano Letters</i> , 2021 , 21, 4394-4402	11.5	13
232	Transfer of Two-Dimensional Oligonucleotide Patterns onto Stereocontrolled Plasmonic Nanostructures through DNA-Origami-Based Nanoimprinting Lithography. <i>Angewandte Chemie</i> , 2016 , 128, 8168-8172	3.6	13
231	DNA Origami Radiometers for Measuring Ultraviolet Exposure. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8782-8789	16.4	13
230	From mouse to mouse-ear cress: Nanomaterials as vehicles in plant biotechnology. <i>Exploration</i> , 2021 , 1, 9-20		13
229	Engineered Anisotropic Fluids of Rare-Earth Nanomaterials. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18213-18217	16.4	12

228	Deciphering buried air phases on natural and bioinspired superhydrophobic surfaces using synchrotron radiation-based X-ray phase-contrast imaging. <i>NPG Asia Materials</i> , 2016 , 8, e306-e306	10.3	12
227	Zero-Background Helicase-Dependent Amplification and Its Application to Reliable Assay of Telomerase Activity in Cancer Cell by Eliminating Primer-Dimer Artifacts. <i>ChemBioChem</i> , 2016 , 17, 1171	-ફે. ⁸	12
226	Sub-diffraction-limit cell imaging using a super-resolution microscope with simplified pulse synchronization. <i>Science China Chemistry</i> , 2017 , 60, 1305-1309	7.9	12
225	Nanomaterials-based Polymerase Chain Reactions for DNA Detection. <i>Current Organic Chemistry</i> , 2011 , 15, 486-497	1.7	12
224	Spectroscopy and Electrochemistry of the Covalent Pyridine-Cytochrome c Complex and a Pyridine-Induced, Alkaline-like Conformation. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 11375-11383	3.4	12
223	Size-Independent Transmembrane Transporting of Single Tetrahedral DNA Nanostructures. <i>Global Challenges</i> , 2020 , 4, 1900075	4.3	12
222	Prescribing Silver Chirality with DNA Origami. <i>Journal of the American Chemical Society</i> , 2021 , 143, 8639	- 86 .446	12
221	Responsive optical probes for deep-tissue imaging: Photoacoustics and second near-infrared fluorescence. <i>Advanced Drug Delivery Reviews</i> , 2021 , 173, 141-163	18.5	12
220	Near-Field Nanoscopic Terahertz Imaging of Single Proteins. Small, 2021, 17, e2005814	11	12
219	Single-Cell Mobility Analysis of Metastatic Breast Cancer Cells. <i>Advanced Science</i> , 2018 , 5, 1801158	13.6	12
218	Recent Advances of DNA Nanostructure-Based Cell Membrane Engineering. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2001718	10.1	12
217	Synchrotron-based X-ray microscopy for sub-100nm resolution cell imaging. <i>Current Opinion in Chemical Biology</i> , 2017 , 39, 11-16	9.7	11
216	Reprogramming of cancer invasiveness and macrophage education via a nanostructured antagonist of the TGFI receptor. <i>Materials Horizons</i> , 2019 , 6, 1675-1681	14.4	11
215	Classifying Cell Types with DNA-Encoded Ligand-Receptor Interactions on the Cell Membrane. <i>Nano Letters</i> , 2020 , 20, 3521-3527	11.5	11
214	Synchrotron-based X-ray-sensitive nanoprobes for cellular imaging. <i>Advanced Materials</i> , 2014 , 26, 7889-	9254	11
213	High-selective removal of ultra-low level mercury ions from aqueous solution using oligothymonucleic acid functionalized polyethylene film. <i>Science China Chemistry</i> , 2012 , 55, 2202-2208	7.9	11
212	A gold nanoparticle-based microfluidic protein chip for tumor markers. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 1194-7	1.3	11
211	Highly sensitive biosensors based on water-soluble conjugated polymers. <i>Science Bulletin</i> , 2004 , 49, 222	27	11

210	General Synthesis of Ultrafine Monodispersed Hybrid Nanoparticles from Highly Stable Monomicelles. <i>Advanced Materials</i> , 2021 , 33, e2100820	24	11	
209	DNA Assembly-Based Stimuli-Responsive Systems. <i>Advanced Science</i> , 2021 , 8, 2100328	13.6	11	
208	Ion-Mediated Polymerase Chain Reactions Performed with an Electronically Driven Microfluidic Device. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12450-4	16.4	11	
207	Epitope Binning Assay Using an Electron Transfer-Modulated Aptamer Sensor. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 341-349	9.5	11	
206	Translocation of tetrahedral DNA nanostructures through a solid-state nanopore. <i>Nanoscale</i> , 2019 , 11, 6263-6269	7.7	10	
205	Mechanically Strong Globular-Protein-Based Fibers Obtained Using a Microfluidic Spinning Technique. <i>Angewandte Chemie</i> , 2020 , 132, 4374-4378	3.6	10	
204	An improved DNA force field for ssDNA interactions with gold nanoparticles. <i>Journal of Chemical Physics</i> , 2014 , 140, 234102	3.9	10	
203	Detection of single-nucleotide polymorphism on uidA gene of Escherichia coli by a multiplexed electrochemical DNA biosensor with oligonucleotide-incorporated nonfouling surface. <i>Sensors</i> , 2011 , 11, 8018-27	3.8	10	
202	Disposable Screen-Printed Electrode Coupled with Recombinant Drosophila melanogaster Acetylcholinesterase and Multiwalled Carbon Nanotubes for Rapid Detection of Pesticides. <i>Journal of AOAC INTERNATIONAL</i> , 2011 , 94, 307-312	1.7	10	
201	Saturated FEster resonance energy transfer microscopy with a stimulated emission depletion beam: a pathway toward single-molecule resolution in far-field bioimaging. <i>Optics Letters</i> , 2010 , 35, 38	62-4	10	
200	SIZE AND SURFACE EFFECT OF GOLD NANOPARTICLES (AuNPs) IN NANOGOLD-ASSISTED PCR. Surface Review and Letters, 2008 , 15, 757-762	1.1	10	
199	Facile Interfacial Electron Transfer of Hemoglobin. <i>International Journal of Molecular Sciences</i> , 2005 , 6, 303-310	6.3	10	
198	Aptamer-modified DNA tetrahedra-gated metal-organic framework nanoparticle carriers for enhanced chemotherapy or photodynamic therapy. <i>Chemical Science</i> , 2021 , 12, 14473-14483	9.4	10	
197	A protein-independent fluorescent RNA aptamer reporter system for plant genetic engineering. <i>Nature Communications</i> , 2020 , 11, 3847	17.4	10	
196	Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy. <i>Nanoscale</i> , 2016 , 8, 5842-6	7.7	10	
195	Programming Accessibility of DNA Monolayers for Degradation-Free Whole-Blood Biosensors 2019 , 1, 671-676		10	
194	Fine Customization of Calcium Phosphate Nanostructures with Site-Specific Modification by DNA Templated Mineralization. <i>ACS Nano</i> , 2021 , 15, 1555-1565	16.7	10	
193	Single-Molecule Studies of Allosteric Inhibition of Individual Enzyme on a DNA Origami Reactor. Journal of Physical Chemistry Letters, 2018, 9, 6786-6794	6.4	10	

192	Data Storage Based on DNA. Small Structures, 2021, 2, 2000046	8.7	10
191	Nuclease-free target recycling signal amplification for ultrasensitive multiplexing DNA biosensing. <i>Biosensors and Bioelectronics</i> , 2017 , 94, 605-608	11.8	9
190	Theranostic Nanoplatform with Hydrogen Sulfide Activatable NIR Responsiveness for Imaging-Guided On-Demand Drug Release. <i>Angewandte Chemie</i> , 2019 , 131, 16982-16986	3.6	9
189	Nonlinear Regulation of Enzyme-Free DNA Circuitry with Ultrasensitive Switches. <i>ACS Synthetic Biology</i> , 2019 , 8, 2106-2112	5.7	9
188	Programming Rotary Motions with a Hexagonal DNA Nanomachine. <i>Chemistry - A European Journal</i> , 2019 , 25, 5158-5162	4.8	9
187	Programming Biomimetically Confined Aptamers with DNA Frameworks. ACS Nano, 2020, 14, 8776-878	3 16.7	9
186	Information stored in nanoscale: Encoding data in a single DNA strand with Base64. <i>Nano Today</i> , 2020 , 33, 100871	17.9	9
185	Direct DNA Methylation Profiling with an Electric Biosensor. ACS Nano, 2020, 14, 6743-6751	16.7	9
184	Using stannous ion as an excellent inorganic ECL coreactant for tris(2,2'-bipyridyl) ruthenium(II). <i>Dalton Transactions</i> , 2012 , 41, 1630-4	4.3	9
183	Nanomechanical identification of proteins using microcantilever-based chemical sensors. <i>Nanoscale</i> , 2012 , 4, 6739-42	7.7	9
182	Epitaxial Growth of Peptide Nanofilaments on Inorganic Surfaces: Effects of Interfacial Hydrophobicity/Hydrophilicity. <i>Angewandte Chemie</i> , 2006 , 118, 3693-3695	3.6	9
181	Reactions of fullerenes with reactive methylene organophosphorus reagents: efficient synthesis of organophosphorus group substituted C60 and C70 derivatives. <i>Journal of Organic Chemistry</i> , 2006 , 71, 2267-71	4.2	9
180	Compression of Single Conjugated-polymer Nanoparticles with AFM Tips. <i>Chemistry Letters</i> , 2005 , 34, 1488-1489	1.7	9
179	Label-Free and Three-Dimensional Visualization Reveals the Dynamics of Plasma Membrane-Derived Extracellular Vesicles. <i>Nano Letters</i> , 2020 , 20, 6313-6319	11.5	9
178	DNA Framework-Supported Electrochemical Analysis of DNA Methylation for Prostate Cancers. <i>Nano Letters</i> , 2020 , 20, 7028-7035	11.5	9
177	Multi-Mode Reconfigurable DNA-Based Chemical Reaction Circuits for Soft Matter Computing and Control. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 15013-15019	16.4	9
176	Intracellular Entropy-Driven Multi-Bit DNA Computing for Tumor Progression Discrimination. <i>Angewandte Chemie</i> , 2020 , 132, 13369-13374	3.6	8
175	Genetically encoded X-ray cellular imaging for nanoscale protein localization. <i>National Science Review</i> , 2020 , 7, 1218-1227	10.8	8

(2020-2020)

174	Engineering a chemoenzymatic cascade for sustainable photobiological hydrogen production with green algae. <i>Energy and Environmental Science</i> , 2020 , 13, 2064-2068	35.4	8
173	Shaping Functional Materials with DNA Frameworks. <i>Trends in Chemistry</i> , 2020 , 2, 137-147	14.8	8
172	Ultrasensitive analysis of microRNAs with gold nanoparticle-decorated molybdenum disulfide nanohybrid-based multilayer nanoprobes. <i>Chemical Communications</i> , 2020 , 56, 9012-9015	5.8	8
171	Tuning the Intrinsic Nanotoxicity in Advanced Therapeutics. <i>Advanced Therapeutics</i> , 2018 , 1, 1800059	4.9	8
170	Enzyme-Triggered Fluorescence Turn-on: A Probe for Specifically Imaging Ovarian-Cancer-Related EGlutamyltranspeptidase. <i>Chinese Journal of Chemistry</i> , 2017 , 35, 1711-1716	4.9	8
169	High-conductivity graphene nanocomposite via facile, covalent linkage of gold nanoparticles to graphene oxide. <i>Science Bulletin</i> , 2012 , 57, 3086-3092		8
168	Interactions between Cytochrome c and DNA Strands Self-Assembled at Gold Electrode. <i>International Journal of Molecular Sciences</i> , 2007 , 8, 136-144	6.3	8
167	Electron transfer reactivity and catalytic activity of structurally rigidized hemoglobin. <i>Sensors and Actuators B: Chemical</i> , 2007 , 125, 17-21	8.5	8
166	Switchable charge transport path via a potassium ions promoted conformational change of G-quadruplex probe monolayer. <i>Electrochemistry Communications</i> , 2008 , 10, 1258-1260	5.1	8
165	Enhanced electron-transfer reactivity of cytochrome b5 by dimethylsulfoxide and N,N'-dimethylformamide. <i>Analytical Sciences</i> , 2002 , 18, 1031-3	1.7	8
164	Nanobooster-encapsulated hybrid RNA as anti-tumor viral mimicry. <i>Nano Today</i> , 2021 , 38, 101211	17.9	8
163	DNA framework-engineered electrochemical biosensors. Science China Life Sciences, 2020, 63, 1130-114	18.5	8
162	Pairwise Proximity-Differentiated Visualization of Single-Cell DNA Epigenetic Marks. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3428-3432	16.4	8
161	Electric Fano resonance-based terahertz metasensors. <i>Nanoscale</i> , 2021 , 13, 18467-18472	7.7	8
160	Effects of donor and acceptor's fluorescence lifetimes on the method of applying Fister resonance energy transfer in STED microscopy. <i>Journal of Microscopy</i> , 2018 , 269, 59-65	1.9	8
159	Protein-Mimicking Nanoparticles for a Cellular Regulation of Homeostasis. <i>ACS Applied Materials</i> & Samp; Interfaces, 2021, 13, 31331-31336	9.5	8
158	Graphene-based nanoprobes for molecular diagnostics. <i>Analyst, The</i> , 2015 , 140, 6439-51	5	7
157	Prescribing DNA Origami Patterns via Scaffold Decoration. <i>Small</i> , 2020 , 16, e2000793	11	7

156	Protein-mimicking nanoparticle (Protmin)-based nanosensor for intracellular analysis of metal ions. <i>Nuclear Science and Techniques/Hewuli</i> , 2018 , 29, 1	2.1	7
155	Programmed self-assembly of DNA origami nanoblocks into anisotropic higher-order nanopatterns. <i>Science Bulletin</i> , 2013 , 58, 2646-2650		7
154	Dendrimer-folate-copper conjugates as bioprobes for synchrotron X-ray fluorescence imaging. <i>Chemical Communications</i> , 2013 , 49, 10388-90	5.8	7
153	Docking of Antibodies into the Cavities of DNA Origami Structures. <i>Angewandte Chemie</i> , 2017 , 129, 14	16135614	6 1/ 9
152	Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity. <i>Sensors</i> , 2017 , 17,	3.8	7
151	Bias controlled capacitive driven cantilever oscillation for high resolution dynamic force microscopy. <i>Applied Physics Letters</i> , 2013 , 102, 073110	3.4	7
150	Deoxyribonucleic Acid Molecular Design for Electrochemical Biosensors. <i>Chinese Journal of Analytical Chemistry</i> , 2011 , 39, 953-962	1.6	7
149	Direct Three-Dimensional Imaging of the Buried Interfaces between Water and Superhydrophobic Surfaces. <i>Angewandte Chemie</i> , 2010 , 122, 9331-9334	3.6	7
148	Electrochemical Detection of Cecropin CM4 Gene by Single Stranded Probe and Cysteine Modified Gold Electrode. <i>Analytical Letters</i> , 2000 , 33, 1479-1490	2.2	7
147	Framework Nucleic Acids for Cell Imaging and Therapy. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 1-9	2.2	7
146	Catalytic Nucleic Acids for Bioanalysis ACS Applied Bio Materials, 2020, 3, 2674-2685	4.1	7
145	Precisely Controlled Vertical Alignment in Mesostructured Carbon Thin Films for Efficient Electrochemical Sensing. <i>ACS Nano</i> , 2021 , 15, 7713-7721	16.7	7
144	DNA origami single crystals with Wulff shapes. <i>Nature Communications</i> , 2021 , 12, 3011	17.4	7
143	Biocomputing Based on DNA Strand Displacement Reactions. ChemPhysChem, 2021, 22, 1151-1166	3.2	7
142	DNA Framework-Engineered Long-Range Electrostatic Interactions for DNA Hybridization Reactions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16693-16699	16.4	7
141	Synthesis, Antiphospholipase A[Antiprotease, Antibacterial Evaluation and Molecular Docking Analysis of Certain Novel Hydrazones. <i>Molecules</i> , 2016 , 21,	4.8	7
140	DNA-Guided Room-Temperature Synthesis of Single-Crystalline Gold Nanostructures on Graphdiyne Substrates. <i>ACS Central Science</i> , 2020 , 6, 779-786	16.8	7
139	Valence-Engineering of Quantum Dots Using Programmable DNA Scaffolds. <i>Angewandte Chemie</i> , 2017 , 129, 16293-16297	3.6	6

138	Visualizing mRNA in live mammalian cells. <i>Methods</i> , 2019 , 161, 16-23	4.6	6
137	Programming PAM antennae for efficient CRISPR-Cas9 DNA editing. <i>Science Advances</i> , 2020 , 6, eaay994	18:4.3	6
136	Charge Neutralization Drives the Shape Reconfiguration of DNA Nanotubes. <i>Angewandte Chemie</i> , 2018 , 130, 5516-5520	3.6	6
135	. IEEE Sensors Journal, 2011 , 11, 2820-2824	4	6
134	Development of Nano-Scale DNA Computing Devices. <i>Current Nanoscience</i> , 2005 , 1, 89-93	1.4	6
133	Automated Nanoplasmonic Analysis of Spherical Nucleic Acids Clusters in Single Cells. <i>Analytical Chemistry</i> , 2020 , 92, 1333-1339	7.8	6
132	A library of thermotropic liquid crystals of inorganic nanoparticles and extraordinary performances based on their collective ordering. <i>Nano Today</i> , 2021 , 38, 101115	17.9	6
131	Encoding Fluorescence Anisotropic Barcodes with DNA Fameworks. <i>Journal of the American Chemical Society</i> , 2021 , 143, 10735-10742	16.4	6
130	Structural and optical control of DNA-mediated Janus plasmonic nanostructures. <i>Nanoscale</i> , 2016 , 8, 9337-42	7.7	6
129	Ion-Mediated Polymerase Chain Reactions Performed with an Electronically Driven Microfluidic Device. <i>Angewandte Chemie</i> , 2016 , 128, 12638-12642	3.6	6
128	Alleviated Inhibition of Single Enzyme in Confined and Crowded Environment. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 82-89	6.4	6
127	Reconstructing Soma-Soma Synapse-like Vesicular Exocytosis with DNA Origami. <i>ACS Central Science</i> , 2021 , 7, 1400-1407	16.8	6
126	Quantitative Measurement of Spatial Effects of DNA Origami on Molecular Binding Reactions Detected using Atomic Force Microscopy. <i>ACS Applied Materials & Detected Using Atomic Force Microscopy</i> . <i>ACS Applied Materials & Detected Using Atomic Force Microscopy</i> . <i>ACS Applied Materials & Detected Using Materials & Dete</i>	31 ^{9.5}	5
125	PolyA-based DNA bonds with programmable bond length and bond energy. <i>NPG Asia Materials</i> , 2020 , 12,	10.3	5
124	Valency-Controlled Framework Nucleic Acid Signal Amplifiers. <i>Angewandte Chemie</i> , 2018 , 130, 7249-72	53 .6	5
123	FRET lasing from self-assembled DNA tetrahedral nanostructures suspended in optofluidic droplet resonators. <i>European Physical Journal: Special Topics</i> , 2014 , 223, 2057-2062	2.3	5
122	Monodispersed nanoparticles of conjugated polyelectrolyte brush with high charge density for rapid, specific and label-free detection of tumor marker. <i>Analyst, The</i> , 2015 , 140, 1842-6	5	5
121	Real time in vitro regulation of DNA methylation using a 5-fluorouracil conjugated DNA-based stimuli-responsive platform. <i>ACS Applied Materials & Samp; Interfaces</i> , 2013 , 5, 2604-9	9.5	5

120	A Highly Sensitive Amperometric Immunosensor for Clenbuterol Detection in Livestock Urine. <i>Electroanalysis</i> , 2013 , 25, 867-873	3	5
119	A nitric oxide biosensor based on horseradish peroxidase/kieselguhr co-modified pyrolytic graphite electrode. <i>Annali Di Chimica</i> , 2004 , 94, 457-62		5
118	Programmable DNA Hydrogels as Artificial Extracellular Matrix Small, 2022, e2107640	11	5
117	Angiopep-2-conjugated Ag2S Quantum Dot for NIR-II Imaging of Brain Tumors. <i>Acta Chimica Sinica</i> , 2018 , 76, 393	3.3	5
116	Programmable Live-Cell CRISPR Imaging with Toehold-Switch-Mediated Strand Displacement. <i>Angewandte Chemie</i> , 2020 , 132, 20793-20799	3.6	5
115	Proteomic Exploration of Endocytosis of Framework Nucleic Acids. <i>Small</i> , 2021 , 17, e2100837	11	5
114	DNA Nanoribbon-Templated Self-Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. <i>Angewandte Chemie</i> , 2020 , 132, 11934-11942	3.6	5
113	Tracking endocytosis and intracellular distribution of spherical nucleic acids with correlative single-cell imaging. <i>Nature Protocols</i> , 2021 , 16, 383-404	18.8	5
112	Hydrophobic collapse-driven nanoparticle coating with poly-adenine adhesives. <i>Chemical Communications</i> , 2021 , 57, 3801-3804	5.8	5
111	Driving DNA Origami Assembly with a Terahertz Wave Nano Letters, 2021,	11.5	5
110	Cotranscriptionally folded RNA nanostructures pave the way to intracellular nanofabrication. <i>ChemBioChem</i> , 2015 , 16, 39-41	3.8	4
109	Engineered Anisotropic Fluids of Rare-Earth Nanomaterials. <i>Angewandte Chemie</i> , 2020 , 132, 18370-183	7 <u>4</u> 6	4
108	Nanodiamonds Interfere with Wnt-Regulated Cell Migration and Adipocyte Differentiation in Cells and Embryonic Development In Vivo. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1600208	3.1	4
107	The enzyme-amplified amperometric DNA sensor using an electrodeposited polymer redox mediator. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 746-750		4
106	Universal optical assays based on multi-component nanoprobes for genomic deoxyribonucleic acid and proteins. <i>Analytica Chimica Acta</i> , 2011 , 702, 114-9	6.6	4
105	A DNA nanodevice boosts tumour immunity. <i>Nature Nanotechnology</i> , 2021 ,	28.7	4
104	Optically Controlled Ultrafast Terahertz Metadevices with Ultralow Pump Threshold. <i>Small</i> , 2021 , 17, e2104275	11	4
103	Circularized blocker-displacement amplification for multiplex detection of rare DNA variants. <i>Chemical Communications</i> , 2020 , 56, 12331-12334	5.8	4

(2020-2021)

102	Probing the Intracellular Dynamics of Nitric Oxide and Hydrogen Sulfide Using an Activatable NIR II Fluorescence Reporter. <i>Angewandte Chemie</i> , 2021 , 133, 8531-8535	3.6	4
101	Probing the Formation Kinetics and Thermodynamics with Rationally Designed Analytical Tools Enables One-Pot Synthesis and Purification of a Tetrahedral DNA Nanostructure. <i>Analytical Chemistry</i> , 2021 , 93, 7045-7053	7.8	4
100	Pharmaceutical applications of framework nucleic acids <i>Acta Pharmaceutica Sinica B</i> , 2022 , 12, 76-91	15.5	4
99	An Oligonucleotide-Distortion-Responsive Organic Transistor for Platinum-Drug-Induced DNA-Damage Detection. <i>Advanced Materials</i> , 2021 , 33, e2100489	24	4
98	Biosensors based on DNA logic gates. View, 2021, 2, 20200038	7.8	4
97	Novel aptasensor-based assay of sonic hedgehog ligand for detection of portal vein invasion of hepatocellular carcinoma. <i>Biosensors and Bioelectronics</i> , 2021 , 174, 112738	11.8	4
96	A nano-integrated microfluidic biochip for enzyme-based point-of-care detection of creatinine. <i>Chemical Communications</i> , 2021 , 57, 4726-4729	5.8	4
95	DNA nanostructure-encoded fluorescent barcodes. <i>Aggregate</i> , 2020 , 1, 107-116	22.9	4
94	Nanoparticle-Assisted Alignment of Carbon Nanotubes on DNA Origami. <i>Angewandte Chemie</i> , 2020 , 132, 4922-4926	3.6	3
93	Locus-patterned sequence oriented enrichment for multi-dimensional gene analysis. <i>Chemical Science</i> , 2019 , 10, 8421-8427	9.4	3
92	DNA Nanostructure as Smart Carriers for Drug Delivery. <i>Methods in Molecular Biology</i> , 2017 , 1500, 121-	1324	3
91	A silicon-based electrochemical sensor for highly sensitive, specific, label-free and real-time DNA detection. <i>Nanotechnology</i> , 2013 , 24, 444012	3.4	3
90	Cytotoxicity of cadmium-based quantum dots. <i>Chinese Science Bulletin</i> , 2013 , 58, 1393-1402	2.9	3
89	Fabrication of nanometer-sized gold flower microelectrodes for electrochemical biosensing applications. <i>Scientia Sinica Chimica</i> , 2015 , 45, 1214-1219	1.6	3
88	Recent Progress in the Transfer of Graphene Films and Nanostructures Small Methods, 2021 , 5, e2100	7 71 .8	3
87	Empowering single-molecule analysis with self-assembled DNA nanostructures. <i>Matter</i> , 2021 , 4, 3121-3	1.45 ₇	3
86	Programming CircLigase Catalysis for DNA Rings and Topologies. <i>Analytical Chemistry</i> , 2021 , 93, 1801-1	8 / 1. 0	3
85	Expanding detection windows for discriminating single nucleotide variants using rationally designed DNA equalizer probes. <i>Nature Communications</i> , 2020 , 11, 5473	17.4	3

84	Dynamic regulation of DNA nanostructures by noncanonical nucleic acids. <i>NPG Asia Materials</i> , 2021 , 13,	10.3	3
83	Poly-Adenine-Based Spherical Nucleic Acids for Efficient Live-Cell MicroRNA Capture. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14438-14445	16.4	3
82	Metal-Bridged Graphene-Protein Supraparticles for Analog and Digital Nitric Oxide Sensing. <i>Advanced Materials</i> , 2021 , 33, e2007900	24	3
81	Multi-Mode Reconfigurable DNA-Based Chemical Reaction Circuits for Soft Matter Computing and Control. <i>Angewandte Chemie</i> , 2021 , 133, 15140-15146	3.6	3
80	Remote Photothermal Control of DNA Origami Assembly in Cellular Environments. <i>Nano Letters</i> , 2021 , 21, 5834-5841	11.5	3
79	Programming biosensing sensitivity by controlling the dimension of nanostructured electrode. <i>Analytical and Bioanalytical Chemistry</i> , 2019 , 411, 4085-4092	4.4	3
78	Biomimetische DNA-Nanorfiren: Gezielte Synthese und Anwendung nanoskopischer Kanle. <i>Angewandte Chemie</i> , 2019 , 131, 9092-9108	3.6	3
77	Optochemical Control of DNA-Switching Circuits for Logic and Probabilistic Computation. <i>Angewandte Chemie</i> , 2021 , 133, 3439-3443	3.6	3
76	Engineering Allosteric Ribozymes to Detect Thiamine Pyrophosphate in Whole Blood. <i>Analytical Chemistry</i> , 2021 , 93, 4277-4284	7.8	3
75	Advances in DNA Nanostructure-Based Smart Drug Delivery Systems. <i>Nano LIFE</i> , 2017 , 07, 1730001	0.9	2
74	Expression and radiolabeling of Cas9 protein. <i>Nuclear Science and Techniques/Hewuli</i> , 2017 , 28, 1	2.1	2
73	Imaging Chladni Figure of Plasmonic Charge Density Wave in Real Space. ACS Photonics, 2019, 6, 2685-2	2693	2
72	Citrate-assisted efficient local delivery of naked oligonucleotide into live mouse brain cells. <i>Cell Proliferation</i> , 2019 , 52, e12622	7.9	2
71	Forum on Translational DNA Nanotechnology. ACS Applied Materials & amp; Interfaces, 2019, 11, 13833-	13834	2
70	Improved resolution in fluorescence microscopy with the FRET pairs by time gating. <i>Optics Express</i> , 2015 , 23, 13121-9	3.3	2
69	Transportation and fate of gold nanoparticles in oilseed rape. <i>RSC Advances</i> , 2015 , 5, 73827-73833	3.7	2
68	DNA Framework-Based Topological Cell Sorters. <i>Angewandte Chemie</i> , 2020 , 132, 10492-10496	3.6	2
67	Synchrotron-Based Bioimaging in Cells and In vivo 2018 , 563-596		2

Synchrotron Radiation Experimental Techniques 2018, 61-121 66 2 DNA reaction networks: Providing a panoramic view. Nature Chemistry, 2016, 8, 738-40 17.6 2 65 DNA Detection: A Molecular Beacon-Based Signal-Off Surface-Enhanced Raman Scattering Strategy 64 for Highly Sensitive, Reproducible, and Multiplexed DNA Detection (Small 15/2013). Small, 2013, 9, $2652 \cdot 2652 \cdot 2$ Bioanalysis and Bioimaging with Fluorescent Conjugated Polymers and Conjugated Polymer 63 0.4 Nanoparticles. ACS Symposium Series, 2012, 81-117 Self-Assembly-Based Structural DNA Nanotechnology. Current Organic Chemistry, 2011, 15, 534-547 62 1.7 2 Optical Detection of Non-amplified Genomic DNA. Soft and Biological Matter, 2012, 153-183 0.8 61 2 Interactions between Endostatin and Vascular Endothelial Growth Factor (VEGF) and Inhibition of 60 6.3 2 Choroidal Neovascularization. International Journal of Molecular Sciences, 2007, 8, 61-69 Research progress and applications of self-assembled DNA nanostructures. Chinese Science Bulletin, 59 2.9 2 **2014**, 59, 146-157 Progress in biological safety of graphene. Chinese Science Bulletin, 2014, 59, 1927-1936 58 2.9 2 Nanomechanical Induction of Autophagy-Related Fluorescence in Single Cells with Atomic Force 13.6 57 Microscopy. Advanced Science, 2021, 8, e2102989 RCA-Assisted Self-assembled DNA Origami Nano-constructs as Vehicles for Cellular Delivery of 56 2 Diagnostic Probes and Therapeutic Drugs 2016, 151-159 DNA Origami Nanostructures with Scaffolds Obtained from Rolling Circle Amplification 2020, 2, 1322-1327 Catalytic DNA Origami-based Chiral Plasmonic Biosensor. Chemical Research in Chinese Universities, 2.2 2 54 2021, 37, 914-918 Pairwise Proximity-Differentiated Visualization of Single-Cell DNA Epigenetic Marks. Angewandte 3.6 2 53 Chemie, 2021, 133, 3470-3474 Probing Transient DNA Conformation Changes with an Intercalative Fluorescent Excimer. 16.4 52 Angewandte Chemie - International Edition, 2021, 60, 6624-6630 Modular DNA Circuits for Point-of-Care Colorimetric Assay of Infectious Pathogens. Analytical 7.8 51 Chemistry, 2021, 93, 13861-13869 Construction of Functional DNA Nanostructures for Theranostic Applications 93-130 50 2 A smartphone-based three-in-one biosensor for co-detection of SARS-CoV-2 viral RNA, antigen and 5.8 2 49 antibody.. Chemical Communications, 2022, 58, 6108-6111

48	Molecular Visualization of Early-Stage Acute Kidney Injury with a DNA Framework Nanodevice <i>Advanced Science</i> , 2022 , e2105947	13.6	2
47	Protein-Mimicking Nanoparticles in Biosystems Advanced Materials, 2022 , e2201562	24	2
46	DNA-Edited Ligand Positioning on Red Blood Cells to Enable Optimized T Cell Activation for Adoptive Immunotherapy. <i>Angewandte Chemie</i> , 2020 , 132, 14952-14963	3.6	1
45	Synchrotron Soft X-ray Absorption Spectroscopy Study of Carbon and Silicon Nanostructures for Energy Applications 2018 , 275-319		1
44	Ultrahigh precision low-cost pinpointed SiO2 patterns nanofabrication by using traditional MEMS fabrication processes. <i>Microsystem Technologies</i> , 2016 , 22, 2101-2107	1.7	1
43	Titelbild: Single-Particle Tracking and Modulation of Cell Entry Pathways of a Tetrahedral DNA Nanostructure in Live Cells (Angew. Chem. 30/2014). <i>Angewandte Chemie</i> , 2014 , 126, 7809-7809	3.6	1
42	Digital microfluidic chip for rapid portable detection of mercury(II) 2010,		1
41	Adsorptive Behavior of Hemoglobin at a Platinum Electrode and Its Application to the Determination of Protein <i>Analytical Sciences</i> , 2000 , 16, 463-465	1.7	1
40	DNA-Based Concatenated Encoding System for High-Reliability and High-Density Data Storage <i>Small Methods</i> , 2022 , e2101335	12.8	1
39	Optically Controlled Ultrafast Terahertz Metadevices with Ultralow Pump Threshold (Small 44/2021). <i>Small</i> , 2021 , 17, 2170233	11	1
38	Controlling Water Flow through a Synthetic Nanopore with Permeable Cations <i>ACS Central Science</i> , 2021 , 7, 2092-2098	16.8	1
37	Benzyl-rich ligand engineering of the photostability of atomically precise gold nanoclusters <i>Chemical Communications</i> , 2022 ,	5.8	1
36	DNA Origami Nanostructures 2013 , 207-224		1
35	X-ray and optical characterizations of DNA-mediated Janus nanostructures. <i>Applied Physics Letters</i> , 2016 , 109, 233101	3.4	1
34	DNA Nanostructures Coordinate Gene Silencing in Mature Plants		1
33	Asymmetric reconstruction of mammalian reovirus reveals interactions among RNA, transcriptional factor [12] and capsid proteins. <i>Nature Communications</i> , 2021 , 12, 4176	17.4	1
32	Advances in Whole-Cell Photobiological Hydrogen Production. <i>Advanced NanoBiomed Research</i> , 2021 , 1, 2000051	О	1
31	Cryogenic Electron Microscopy for Resolving DNA Nanostructures and Their Complexes. <i>Small Structures</i> , 2021 , 2, 2100053	8.7	1

30	Advances in aptamer-based nuclear imaging European Journal of Nuclear Medicine and Molecular Imaging, 2022 , 1	8.8	1
29	Programming Receptor Clustering with DNA Probabilistic Circuits for Enhanced Natural Killer Cell Recognition <i>Angewandte Chemie - International Edition</i> , 2022 , e202203800	16.4	1
28	Gold-Nanoparticle-Mediated Assembly of High-Order DNA Nano-Architectures Small, 2022, e2200824	11	1
27	Iterative and accurate determination of small angle X-ray scattering background. <i>Nuclear Science and Techniques/Hewuli</i> , 2016 , 27, 1	2.1	О
26	Innenröktitelbild: Reconfigurable Three-Dimensional DNA Nanostructures for the Construction of Intracellular Logic Sensors (Angew. Chem. 36/2012). <i>Angewandte Chemie</i> , 2012 , 124, 9321-9321	3.6	O
25	Ionic Current Fluctuation and Orientation of Tetrahedral DNA Nanostructures in a Solid-State Nanopore <i>Small</i> , 2022 , e2107237	11	O
24	Addition-Elimination Mechanism-Activated Nucleotide Transition Sequencing for RNA Dynamics Profiling. <i>Analytical Chemistry</i> , 2021 , 93, 13974-13980	7.8	О
23	DNA Origami-Based Nanoprinting for the Assembly of Plasmonic Nanostructures with Single-Molecule Surface-Enhanced Raman Scattering. <i>Angewandte Chemie</i> , 2021 , 133, 11801-11807	3.6	О
22	Impact of Graphene Exposure on Microbial Activity and Community Ecosystem in Saliva <i>ACS Applied Bio Materials</i> , 2019 , 2, 226-235	4.1	O
21	Computer vision-aided bioprinting for bone research <i>Bone Research</i> , 2022 , 10, 21	13.3	O
20	Programmable design of isothermal nucleic acid diagnostic assays through abstraction-based models <i>Nature Communications</i> , 2022 , 13, 1635	17.4	O
19	Engineering DNA-Guided Hydroxyapatite Bulk Materials with High Stiffness and Outstanding Antimicrobial Ability for Dental Inlay Applications <i>Advanced Materials</i> , 2022 , e2202180	24	О
18	Phase transferring luminescent gold nanoclusters via single-stranded DNA. Science China Chemistry,1	7.9	O
17	Branched Nanostructure for Dual-Model Imaging. <i>Nano LIFE</i> , 2017 , 07, 1750003	0.9	
16	A Chemical Approach for Real-time Monitoring Neuronal Activities. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 729-730	2.2	
15	X-ray Microscopy for Nanoscale 3D Imaging of Biological Cells and Tissues 2018 , 757-766		
14	Synchrotron-Based X-ray Microscopy for Nanoscale Bioimaging 2018 , 767-784		
13	Innentitelbild: Valency-Controlled Framework Nucleic Acid Signal Amplifiers (Angew. Chem. 24/2018). <i>Angewandte Chemie</i> , 2018 , 130, 7066-7066	3.6	

12	InnenrEktitelbild: Stochastic DNA Walkers in Droplets for Super-Multiplexed Bacterial Phenotype Detection (Angew. Chem. 43/2019). <i>Angewandte Chemie</i> , 2019 , 131, 15699-15699	3.6
11	Gold nanoparticle-assisted primer walking for closing the human chromosomal gap. <i>Analytical Methods</i> , 2013 , 5, 4746	3.2
10	Nanomaterial-Based Antibacterial Paper 2012 , 427-464	
9	Nucleic Acid Enzyme-Based DNA Nanomachine for Biosensing 2013 , 307-320	
8	AMPLIFIED BIOSENSING STRATEGIES FOR THE DETECTION OF BIOLOGICALLY RELATED MOLECULES WITH SILICA NANOPARTICLES AND CONJUGATED POLYELECTROLYTES. <i>Cosmos</i> , 2010 , 06, 207-219	
7	Electrochemically driven assembly of framework nucleic acids. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 905, 115901	4.1
6	Poly-Adenine-Based Spherical Nucleic Acids for Efficient Live-Cell MicroRNA Capture. <i>Angewandte Chemie</i> , 2021 , 133, 14559-14566	3.6
5	DNA Framework-Engineered Long-Range Electrostatic Interactions for DNA Hybridization Reactions. <i>Angewandte Chemie</i> , 2021 , 133, 16829-16835	3.6
4	Probing Transient DNA Conformation Changes with an Intercalative Fluorescent Excimer. <i>Angewandte Chemie</i> , 2021 , 133, 6698-6704	3.6
3	Titelbild: Optochemical Control of DNA-Switching Circuits for Logic and Probabilistic Computation (Angew. Chem. 7/2021). <i>Angewandte Chemie</i> , 2021 , 133, 3353-3353	3.6
2	Programming Molecular Circuitry and Intracellular Computing with Framework Nucleic Acids 2021 , 77-1	03

DNA Nanotechnology for Plasmonics **2022**, 271-323