Kenji Sonomoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5827855/publications.pdf Version: 2024-02-01

		36691	49824
208	10,237	53	91
papers	citations	h-index	g-index
211	211	211	8626
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Secondary Metabolites of Actinomycetales as Potent Quorum Sensing Inhibitors Targeting Gram-Positive Pathogens: In Vitro and In Silico Study. Metabolites, 2022, 12, 246.	1.3	9
2	Molecular characterization of the possible regulation of multiple bacteriocin production through a three-component regulatory system in Enterococcus faecium NKR-5-3. Journal of Bioscience and Bioengineering, 2021, 131, 131-138.	1,1	3
3	The association between gut microbiota development and maturation of intestinal bile acid metabolism in the first 3 y of healthy Japanese infants. Gut Microbes, 2020, 11, 205-216.	4.3	25
4	Kunkecin A, a New Nisin Variant Bacteriocin Produced by the Fructophilic Lactic Acid Bacterium, Apilactobacillus kunkeei FF30-6 Isolated From Honey Bees. Frontiers in Microbiology, 2020, 11, 571903.	1.5	32
5	Processing and secretion of non-cognate bacteriocins by EnkT, an ABC transporter from a multiple-bacteriocin producer, Enterococcus faecium NKR-5-3. Journal of Bioscience and Bioengineering, 2020, 130, 596-603.	1.1	2
6	Dynamic simulation of continuous mixed sugar fermentation with increasing cell retention time for lactic acid production using Enterococcus mundtii QU 25. Biotechnology for Biofuels, 2020, 13, 112.	6.2	4
7	Mosaic Cooperativity in Slow Polypeptide Topological Isomerization Revealed by Residue-Specific NMR Thermodynamic Analysis. Journal of Physical Chemistry Letters, 2020, 11, 1934-1939.	2.1	8
8	Carboxylated-cellulose nanofibers from oil palm empty fruit bunches enhanced extractive fermentation in microbial biobutanol production. IOP Conference Series: Earth and Environmental Science, 2020, 415, 012019.	0.2	1
9	Nonâ€carbon loss longâ€ŧerm continuous lactic acid production from mixed sugars using thermophilic Enterococcus faecium QU 50. Biotechnology and Bioengineering, 2020, 117, 1673-1683.	1.7	10
10	Lowering effect of viable <i>Pediococcus pentosaceus</i> QU 19 on the rise in postprandial glucose. Bioscience of Microbiota, Food and Health, 2020, 39, 57-64.	0.8	6
11	Transcriptome profile of carbon catabolite repression in an efficient l-(+)-lactic acid-producing bacterium Enterococcus mundtii QU25 grown in media with combinations of cellobiose, xylose, and glucose. PLoS ONE, 2020, 15, e0242070.	1.1	3
12	Critical fermentation factors that influence the production of multiple bacteriocins of Enterococcus faecium NKR-5-3. Annals of Tropical Research, 2020, , 71-84.	0.1	1
13	Constitutive expression of phosphoketolase, a key enzyme for metabolic shift from homo- to heterolactic fermentation in <i>Enterococcus mundtii</i> QU 25. Bioscience of Microbiota, Food and Health, 2019, 38, 111-114.	0.8	1
14	Smart fermentation engineering for butanol production: designed biomass and consolidated bioprocessing systems. Applied Microbiology and Biotechnology, 2019, 103, 9359-9371.	1.7	32
15	Relation between cellâ€bound exopolysaccharide production via plasmidâ€encoded genes and rugose colony morphology in the probiotic Lactobacillus brevis KB290. Animal Science Journal, 2019, 90, 1575-1580.	0.6	3
16	Complete Genome Sequence of Enterococcus faecium QU50, a Thermophilic Lactic Acid Bacterium Capable of Metabolizing Xylose. Microbiology Resource Announcements, 2019, 8, .	0.3	0
17	Plasmid-encoded glycosyltransferase operon is responsible for exopolysaccharide production, cell aggregation, and bile resistance in a probiotic strain, LactobacillusAbrevis KB290. Journal of Bioscience and Bioengineering, 2019, 128, 391-397.	1.1	24
18	Highly efficient continuous acetone–butanol–ethanol production from mixed sugars without carbon catabolite repression. Bioresource Technology Reports, 2019, 7, 100185.	1.5	11

#	Article	IF	CITATIONS
19	Functional analysis of biosynthetic genes for bacteriocins. Japanese Journal of Lactic Acid Bacteria, 2019, 30, 18-26.	0.1	0
20	Semi-hydrolysate of paper pulp without pretreatment enables a consolidated fermentation system with in situ product recovery for the production of butanol. Bioresource Technology, 2019, 278, 57-65.	4.8	16
21	Evaluation of leader peptides that affect the secretory ability of a multiple bacteriocin transporter, EnkT. Journal of Bioscience and Bioengineering, 2018, 126, 23-29.	1.1	16
22	Metabolic dependent and independent pH-drop shuts down VirSR quorum sensing in Clostridium perfringens. Journal of Bioscience and Bioengineering, 2018, 125, 525-531.	1.1	11
23	Diversified transporters and pathways for bacteriocin secretion in gram-positive bacteria. Applied Microbiology and Biotechnology, 2018, 102, 4243-4253.	1.7	31
24	ATPase activity regulation by leader peptide processing of ABC transporter maturation and secretion protein, NukT, for lantibiotic nukacin ISK-1. Applied Microbiology and Biotechnology, 2018, 102, 763-772.	1.7	8
25	The lantibiotic nukacin ISK-1 exists in an equilibrium between active and inactive lipid-II binding states. Communications Biology, 2018, 1, 150.	2.0	24
26	Recognizability of heterologous coâ€chaperones with <i>Streptococcus intermedius</i> DnaK and <i>Escherichia coli</i> DnaK. Microbiology and Immunology, 2018, 62, 681-693.	0.7	2
27	Circular and Leaderless Bacteriocins: Biosynthesis, Mode of Action, Applications, and Prospects. Frontiers in Microbiology, 2018, 9, 2085.	1.5	109
28	Greener L-lactic acid production through in situ extractive fermentation by an acid-tolerant Lactobacillus strain. Applied Microbiology and Biotechnology, 2018, 102, 6425-6435.	1.7	15
29	Semi-hydrolysis with low enzyme loading leads to highly effective butanol fermentation. Bioresource Technology, 2018, 264, 335-342.	4.8	24
30	Free lactic acid production under acidic conditions by lactic acid bacteria strains: challenges and future prospects. Applied Microbiology and Biotechnology, 2018, 102, 5911-5924.	1.7	73
31	Urban Diets Linked to Gut Microbiome and Metabolome Alterations in Children: A Comparative Cross-Sectional Study in Thailand. Frontiers in Microbiology, 2018, 9, 1345.	1.5	55
32	Novel biobutanol fermentation at a large extractant volume ratio using immobilized Clostridium saccharoperbutylacetonicum N1-4. Journal of Bioscience and Bioengineering, 2018, 126, 750-757.	1.1	15
33	Characterisation of the action mechanism of a Lactococcus-specific bacteriocin, lactococcin Z. Journal of Bioscience and Bioengineering, 2018, 126, 603-610.	1.1	23
34	LiaRS reporter assay: A simple tool to identify lipid II binding moieties in lantibiotic nukacin ISK-1. Journal of Bioscience and Bioengineering, 2017, 123, 398-401.	1.1	7
35	Thermophilic Enterococcus faecium QU 50 enabled open repeated batch fermentation for <scp>l</scp> -lactic acid production from mixed sugars without carbon catabolite repression. RSC Advances, 2017, 7, 24233-24241.	1.7	16
36	Enhancement of acetone-butanol-ethanol fermentation from eucalyptus hydrolysate with optimized nutrient supplementation through statistical experimental designs. Renewable Energy, 2017, 113, 580-586.	4.3	9

#	Article	IF	CITATIONS
37	Functional analysis of the biosynthetic gene cluster required for immunity and secretion of a novel <i>Lactococcus</i> -specific bacteriocin, lactococcin Z. Journal of Applied Microbiology, 2017, 123, 1124-1132.	1.4	19
38	Stimulation of d- and l-lactate dehydrogenases transcriptional levels in presenceÂof diammonium hydrogen phosphate resulting to enhanced lactic acidÂproduction by Lactobacillus strain. Journal of Bioscience and Bioengineering, 2017, 124, 674-679.	1.1	12
39	Signatures in the gut microbiota of Japanese infants who developed food allergies in early childhood. FEMS Microbiology Ecology, 2017, 93, .	1.3	35
40	Biorefinery-Based Lactic Acid Fermentation: Microbial Production of Pure Monomer Product. Advances in Polymer Science, 2017, , 27-66.	0.4	21
41	Impact of Westernized Diet on Gut Microbiota in Children on Leyte Island. Frontiers in Microbiology, 2017, 8, 197.	1.5	132
42	<i>ln vitro</i> synergistic activities of cefazolin and nisin A against mastitis pathogens. Journal of Veterinary Medical Science, 2017, 79, 1472-1479.	0.3	20
43	Mutations near the cleavage site of enterocin NKR-5-3B prepeptide reveal new insights into its biosynthesis. Microbiology (United Kingdom), 2017, 163, 431-441.	0.7	18
44	Cationic Lipid Content in Liposome-Encapsulated Nisin Improves Sustainable Bactericidal Activity against Streptococcus mutans. Open Dentistry Journal, 2016, 10, 360-366.	0.2	9
45	Nutrition-adaptive control of multiple-bacteriocin production by <i>Weissella hellenica</i> QU 13. Journal of Applied Microbiology, 2016, 120, 70-79.	1.4	9
46	Two-Component Systems Involved in Susceptibility to Nisin A in Streptococcus pyogenes. Applied and Environmental Microbiology, 2016, 82, 5930-5939.	1.4	9
47	Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. Journal of Biotechnology, 2016, 236, 176-192.	1.9	175
48	LnqR, a TetR-family transcriptional regulator, positively regulates lacticin Q production inLactococcus lactisQU 5. FEMS Microbiology Letters, 2016, 363, fnw200.	0.7	16
49	Alleviation of harmful effect in stillage reflux in food waste ethanol fermentation based on metabolic and side-product accumulation regulation. Bioresource Technology, 2016, 218, 463-468.	4.8	5
50	Highly efficient <scp>l</scp> -lactic acid production from xylose in cell recycle continuous fermentation using Enterococcus mundtii QU 25. RSC Advances, 2016, 6, 17659-17668.	1.7	40
51	Functional Analysis of Genes Involved in the Biosynthesis of Enterocin NKR-5-3B, a Novel Circular Bacteriocin. Journal of Bacteriology, 2016, 198, 291-300.	1.0	33
52	High acetone–butanol–ethanol production in pH-stat co-feeding of acetate and glucose. Journal of Bioscience and Bioengineering, 2016, 122, 176-182.	1.1	23
53	Stillage reflux in food waste ethanol fermentation and its by-product accumulation. Bioresource Technology, 2016, 209, 254-258.	4.8	23
54	l-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss. Journal of Bioscience and Bioengineering, 2016, 121, 89-95.	1.1	43

#	Article	IF	CITATIONS
55	Effects of Japanese pepper and red pepper on the microbial community during nukadoko fermentation. Bioscience of Microbiota, Food and Health, 2015, 34, 1-9.	0.8	11
56	Diversity in gut bacterial community of school-age children in Asia. Scientific Reports, 2015, 5, 8397.	1.6	221
57	Enterococcus faecium QU 50: a novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose. FEMS Microbiology Letters, 2015, 362, 1-7.	0.7	40
58	Cyclodepsipeptides produced by actinomycetes inhibit cyclic-peptide-mediated quorum sensing in Gram-positive bacteria. FEMS Microbiology Letters, 2015, 362, fnv109.	0.7	33
59	Identification of Lactococcus-Specific Bacteriocins Produced by Lactococcal Isolates, and the Discovery of a Novel Bacteriocin, Lactococcin Z. Probiotics and Antimicrobial Proteins, 2015, 7, 222-231.	1.9	12
60	Identification, Characterization, and Three-Dimensional Structure of the Novel Circular Bacteriocin, Enterocin NKR-5-3B, from <i>Enterococcus faecium</i> . Biochemistry, 2015, 54, 4863-4876.	1.2	62
61	Purification and characterization of a novel plantaricin, KL-1Y, from Lactobacillus plantarum KL-1. World Journal of Microbiology and Biotechnology, 2015, 31, 983-994.	1.7	29
62	Enterocin F4-9, a Novel <i>O</i> -Linked Glycosylated Bacteriocin. Applied and Environmental Microbiology, 2015, 81, 4819-4826.	1.4	57
63	InÂvitro catalytic activity of N-terminal and C-terminal domains in NukM, theÂpost-translational modification enzyme of nukacin ISK-1. Journal of Bioscience and Bioengineering, 2015, 120, 624-629.	1.1	17
64	Transcriptional regulation of xylose utilization in Enterococcus mundtii QU 25. RSC Advances, 2015, 5, 93283-93292.	1.7	4
65	Rationale design of quorum-quenching peptides that target the VirSR system ofClostridium perfringens. FEMS Microbiology Letters, 2015, 362, fnv188.	0.7	11
66	Enhanced Productions and Recoveries of Ethanol and Methane from Food Waste by a Three-Stage Process. Energy & Fuels, 2015, 29, 6494-6500.	2.5	22
67	Metabolic analysis of butanol production from acetate in Clostridium saccharoperbutylacetonicum N1-4 using ¹³ C tracer experiments. RSC Advances, 2015, 5, 8486-8495.	1.7	30
68	Feasibility of acetone–butanol–ethanol fermentation from eucalyptus hydrolysate without nutrients supplementation. Applied Energy, 2015, 140, 113-119.	5.1	46
69	Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. Journal of Bioscience and Bioengineering, 2015, 119, 10-18.	1.1	234
70	Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression. Journal of Bioscience and Bioengineering, 2015, 119, 153-158.	1.1	66
71	Recent advances to improve fermentative butanol production: Genetic engineering and fermentation technology. Journal of Bioscience and Bioengineering, 2015, 119, 1-9.	1.1	175
72	Molecular characterization of the genes involved in the secretion and immunity of lactococcin Q, a two-peptide bacteriocin produced by Lactococcus lactis QU 4. Microbiology (United Kingdom), 2015, 161, 2069-2078.	0.7	10

Kenji Sonomoto

#	Article	IF	CITATIONS
73	Bactericidal activity of nukacin ISK-1: an alternative mode of action. Bioscience, Biotechnology and Biochemistry, 2014, 78, 1270-1273.	0.6	13
74	Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microbial Cell Factories, 2014, 13, S3.	1.9	363
75	Biological function of a DUF95 superfamily protein involved in the biosynthesis ofÂa circular bacteriocin, leucocyclicin Q. Journal of Bioscience and Bioengineering, 2014, 117, 158-164.	1.1	22
76	<scp>l</scp> -(+)-Lactic acid production by co-fermentation of cellobiose and xylose without carbon catabolite repression using Enterococcus mundtii QU 25. RSC Advances, 2014, 4, 22013-22021.	1.7	29
77	Complete Genome Sequence of Enterococcus mundtii QU 25, an Efficient L-(+)-Lactic Acid-Producing Bacterium. DNA Research, 2014, 21, 369-377.	1.5	22
78	Gene Cluster Responsible for Secretion of and Immunity to Multiple Bacteriocins, the NKR-5-3 Enterocins. Applied and Environmental Microbiology, 2014, 80, 6647-6655.	1.4	23
79	Structural elucidation of an asparagine-linked oligosaccharide from the hyperthermophilic archaeon, Pyrococcus furiosus. Carbohydrate Research, 2014, 387, 30-36.	1.1	19
80	Monitoring of the microbiota profile in nukadoko, a naturally fermented rice bran bed for pickling vegetables. Journal of Bioscience and Bioengineering, 2014, 118, 520-525.	1.1	27
81	Innovative studies on lactic acid bacteria for the new industries . Japanese Journal of Lactic Acid Bacteria, 2014, 25, 155-165.	0.1	Ο
82	Screening and applications of bacteriocins from lactic acid bacteria . Japanese Journal of Lactic Acid Bacteria, 2014, 25, 24-33.	0.1	1
83	Immuno-Electron Microscopy of Primary Cell Cultures from Genetically Modified Animals in Liquid by Atmospheric Scanning Electron Microscopy. Microscopy and Microanalysis, 2014, 20, 469-483.	0.2	25
84	Recent advances and future prospects for increased butanol production by acetoneâ€butanolâ€ethanol fermentation. Engineering in Life Sciences, 2013, 13, 432-445.	2.0	71
85	Improved lactic acid productivity by an open repeated batch fermentation system using Enterococcus mundtii QU 25. RSC Advances, 2013, 3, 8437.	1.7	54
86	Chemically defined media and auxotrophy of the prolific l-lactic acid producer Lactococcus lactis IO-1. Journal of Bioscience and Bioengineering, 2013, 115, 481-484.	1.1	8
87	Efficient butanol production without carbon catabolite repression from mixed sugars with Clostridium saccharoperbutylacetonicum N1-4. Journal of Bioscience and Bioengineering, 2013, 116, 716-721.	1.1	45
88	Continuous butanol fermentation from xylose with high cell density by cell recycling system. Bioresource Technology, 2013, 129, 360-365.	4.8	69
89	Identification and characterization of novel multiple bacteriocins produced by <i>Lactobacillus sakei</i> D98. Journal of Applied Microbiology, 2013, 115, 61-69.	1.4	36
90	Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 2013, 31, 877-902.	6.0	758

#	Article	lF	CITATIONS
91	Involvement of the Novel Two-Component NsrRS and LcrRS Systems in Distinct Resistance Pathways against Nisin A and Nukacin ISK-1 in Streptococcus mutans. Applied and Environmental Microbiology, 2013, 79, 4751-4755.	1.4	32
92	Up to Species-level Community Analysis of Human Gut Microbiota by 16S rRNA Amplicon Pyrosequencing. Bioscience of Microbiota, Food and Health, 2013, 32, 69-76.	0.8	15
93	Three Distinct Two-Component Systems Are Involved in Resistance to the Class I Bacteriocins, Nukacin ISK-1 and Nisin A, in Staphylococcus aureus. PLoS ONE, 2013, 8, e69455.	1.1	54
94	Production of Acetone, Butanol and Ethanol as Bioenergy Source Materials by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) using Different Substrates. Microbiology Indonesia, 2013, 7, 113-123.	0.2	1
95	Complete Genome Sequence of Lactococcus lactis IO-1, a Lactic Acid Bacterium That Utilizes Xylose and Produces High Levels of <scp>l</scp> -Lactic Acid. Journal of Bacteriology, 2012, 194, 2102-2103.	1.0	49
96	Identification of the genes involved in the secretion and self-immunity of lacticin Q, an unmodified leaderless bacteriocin from Lactococcus lactis QU 5. Microbiology (United Kingdom), 2012, 158, 2927-2935.	0.7	25
97	Isolation and Characterization of Enterocin W, a Novel Two-Peptide Lantibiotic Produced by Enterococcus faecalis NKR-4-1. Applied and Environmental Microbiology, 2012, 78, 900-903.	1.4	45
98	Identification of Enterocin NKR-5-3C, a Novel Class IIa Bacteriocin Produced by a Multiple Bacteriocin Producer, <i>Enterococcus faecium</i> NKR-5-3. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1245-1247.	0.6	27
99	Garvieacin Q, a Novel Class II Bacteriocin from Lactococcus garvieae BCC 43578. Applied and Environmental Microbiology, 2012, 78, 1619-1623.	1.4	59
100	New type non-lantibiotic bacteriocins: circular and leaderless bacteriocins. Beneficial Microbes, 2012, 3, 3-12.	1.0	42
101	Cholesterol-lowering Effects of Lactobacillus brevis Isolated from Turnip "Tsuda Kabuâ€: Food Science and Technology Research, 2012, 18, 825-834.	0.3	6
102	Antibacterial Peptides "Bacteriocinsâ€: An Overview of Their Diverse Characteristics and Applications. Biocontrol Science, 2012, 17, 1-16.	0.2	137
103	Antimicrobial mechanism of lantibiotics. Biochemical Society Transactions, 2012, 40, 1528-1533.	1.6	95
104	Novel high butanol production from lactic acid and pentose by Clostridium saccharoperbutylacetonicum. Journal of Bioscience and Bioengineering, 2012, 114, 526-530.	1.1	30
105	Monitoring of the multiple bacteriocin production by Enterococcus faecium NKR-5-3 through a developed liquid chromatography and mass spectrometry-based quantification system. Journal of Bioscience and Bioengineering, 2012, 114, 490-496.	1.1	33
106	Development of high-speed and highly efficient butanol production systems from butyric acid with high density of living cells of Clostridium saccharoperbutylacetonicum. Journal of Biotechnology, 2012, 157, 605-612.	1.9	34
107	Purification and Characterization of Multiple Bacteriocins and an Inducing Peptide Produced byEnterococcus faeciumNKR-5-3 from Thai Fermented Fish. Bioscience, Biotechnology and Biochemistry, 2012, 76, 947-953.	0.6	65
108	Ring A of Nukacin ISK-1: A Lipid II-Binding Motif for Type-A(II) Lantibiotic. Journal of the American Chemical Society, 2012, 134, 3687-3690.	6.6	67

#	Article	IF	CITATIONS
109	Single Step Lactic Acid Production from Cassava Starch by Laactobacillus plantarum SW14 in Conventional Continuous and Continuous with High Cell Density. APCBEE Procedia, 2012, 2, 97-103.	0.5	18
110	Characterization and identification of weissellicin Y and weissellicin M, novel bacteriocins produced by Weissella hellenica QU 13. Journal of Applied Microbiology, 2012, 112, 99-108.	1.4	59
111	Role of Streptococcus intermedius DnaK chaperone system in stress tolerance and pathogenicity. Cell Stress and Chaperones, 2012, 17, 41-55.	1.2	29
112	Enhanced production of nukacin D13E in Lactococcus lactis NZ9000 by the additional expression of immunity genes. Applied Microbiology and Biotechnology, 2012, 93, 671-678.	1.7	4
113	Efficient Homofermentative <scp>l</scp> -(+)-Lactic Acid Production from Xylose by a Novel Lactic Acid Bacterium, <i>Enterococcus mundtii</i> QU 25. Applied and Environmental Microbiology, 2011, 77, 1892-1895.	1.4	75
114	Engineering Unusual Amino Acids into Peptides Using Lantibiotic Synthetase. Methods in Molecular Biology, 2011, 705, 225-236.	0.4	8
115	Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. Journal of Biotechnology, 2011, 156, 286-301.	1.9	447
116	Structural and Functional Diversity of Lantibiotic Immunity Proteins. Current Pharmaceutical Biotechnology, 2011, 12, 1231-1239.	0.9	10
117	16S rRNA pyrosequencing-based investigation of the bacterial community in nukadoko, a pickling bed of fermented rice bran. International Journal of Food Microbiology, 2011, 144, 352-359.	2.1	86
118	Purification, characterization and in vitro cytotoxicity of the bacteriocin from Pediococcus acidilactici K2a2-3 against human colon adenocarcinoma (HT29) and human cervical carcinoma (HeLa) cells. World Journal of Microbiology and Biotechnology, 2011, 27, 975-980.	1.7	72
119	Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo l-(+)-lactic acid. Applied Microbiology and Biotechnology, 2011, 89, 1039-1049.	1.7	61
120	Continuous d-lactic acid production by a novelthermotolerant Lactobacillus delbrueckii subsp. lactis QU 41. Applied Microbiology and Biotechnology, 2011, 89, 1741-1750.	1.7	102
121	Methodologies and Strategies for the Bioengineering of Lantibiotics. Current Pharmaceutical Biotechnology, 2011, 12, 1221-1230.	0.9	8
122	Lantibiotic Transporter Requires Cooperative Functioning of the Peptidase Domain and the ATP Binding Domain. Journal of Biological Chemistry, 2011, 286, 11163-11169.	1.6	27
123	Identification and Characterization of Leucocyclicin Q, a Novel Cyclic Bacteriocin Produced by Leuconostoc mesenteroides TK41401. Applied and Environmental Microbiology, 2011, 77, 8164-8170.	1.4	90
124	Fructobacillus tropaeoli sp. nov., a fructophilic lactic acid bacterium isolated from a flower. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 898-902.	0.8	70
125	LAB bacteriocins: screening, discovery and applications Japanese Journal of Lactic Acid Bacteria, 2011, 22, 38-48.	0.1	1
126	Characterization of modification enzyme NukM and engineering of a novel thioether bridge in lantibiotic nukacin ISK-1. Applied Microbiology and Biotechnology, 2010, 86, 891-899.	1.7	13

#	Article	IF	CITATIONS
127	Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum. Applied Microbiology and Biotechnology, 2010, 87, 1177-1185.	1.7	55
128	Lactococcal membrane-permeabilizing antimicrobial peptides. Applied Microbiology and Biotechnology, 2010, 88, 1-9.	1.7	43
129	Isolation and Characterization of Novel Lactic Acid Bacterium for Efficient Production of L (+) - Lactic Acid from Xylose. Journal of Biotechnology, 2010, 150, 347-347.	1.9	2
130	Effective (+)-Lactic Acid Production by Co-fermentation of Mixed Sugars. Journal of Biotechnology, 2010, 150, 347-348.	1.9	7
131	Identification and characterization of novel multiple bacteriocins produced by <i>Leuconostoc pseudomesenteroides</i> QU 15. Journal of Applied Microbiology, 2010, 109, 282-291.	1.4	40
132	Functional Significance of the E Loop, a Novel Motif Conserved in the Lantibiotic Immunity ATP-Binding Cassette Transport Systems. Journal of Bacteriology, 2010, 192, 2801-2808.	1.0	22
133	Effect of a Negatively Charged Lipid on Membrane-Lacticin Q Interaction and Resulting Pore Formation. Bioscience, Biotechnology and Biochemistry, 2010, 74, 218-221.	0.6	11
134	Lacticin Q, a Lactococcal Bacteriocin, Causes High-Level Membrane Permeability in the Absence of Specific Receptors. Applied and Environmental Microbiology, 2009, 75, 538-541.	1.4	56
135	Identification and Characterization of Lactocyclicin Q, a Novel Cyclic Bacteriocin Produced by <i>Lactococcus</i> sp. Strain QU 12. Applied and Environmental Microbiology, 2009, 75, 1552-1558.	1.4	112
136	Nukacin ISK-1, a Bacteriostatic Lantibiotic. Antimicrobial Agents and Chemotherapy, 2009, 53, 3595-3598.	1.4	46
137	Peptide-Lipid Huge Toroidal Pore, a New Antimicrobial Mechanism Mediated by a Lactococcal Bacteriocin, Lacticin Q. Antimicrobial Agents and Chemotherapy, 2009, 53, 3211-3217.	1.4	114
138	Lantibiotics: Diverse activities and unique modes of action. Journal of Bioscience and Bioengineering, 2009, 107, 475-487.	1.1	148
139	Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1. Journal of Bioscience and Bioengineering, 2009, 108, 376-384.	1.1	25
140	ATP-dependent leader peptide cleavage by NukT, a bifunctional ABC transporter, during lantibiotic biosynthesis. Journal of Bioscience and Bioengineering, 2009, 108, 460-464.	1.1	25
141	Evaluation of essential and variable residues of nukacin ISKâ€∃ by NNK scanning. Molecular Microbiology, 2009, 72, 1438-1447.	1.2	78
142	Mapping and identification of the region and secondary structure required for the maturation of the nukacin ISK-1 prepeptide. Peptides, 2009, 30, 1412-1420.	1.2	29
143	Nishn Production with Fermented Barley Extract(FBE) Derived from Barley <i>Shochu Kasu</i> . Journal of the Brewing Society of Japan, 2009, 104, 579-586.	0.1	0

144 āf ©āf³āfēf"ā,ªāf†ā,£āffā,⁻āē®ç‰¹æ€§āëæ¬¡ä,−代āfšāf−āfēf‰āf‡ā,¶ā,₿f³æŠ€è;"ā®é−‹ç™º. Kagaku To Sedbotsu, 20009, 47, 91-

#	Article	IF	CITATIONS
145	Kinetic study of substrate dependency for higher butanol production in acetone–butanol–ethanol fermentation. Process Biochemistry, 2008, 43, 1452-1461.	1.8	78
146	Description of durancin TW-49M, a novel enterocin B-homologous bacteriocin in carrot-isolated <i>Enterococcus durans</i> QU 49. Journal of Applied Microbiology, 2008, 105, 681-690.	1.4	27
147	Biosynthetic characterization and biochemical features of the third natural nisin variant, nisin Q, produced by <i>Lactococcus lactis</i> 61-14. Journal of Applied Microbiology, 2008, 105, 1982-1990.	1.4	36
148	Construction of Escherichia coli dnaK-deletion mutant infected by λDE3 for overexpression and purification of recombinant GrpE proteins. Protein Expression and Purification, 2008, 60, 31-36.	0.6	8
149	Molecular Chaperones in Lactic Acid Bacteria: Physiological Consequences and Biochemical Properties. Journal of Bioscience and Bioengineering, 2008, 106, 324-336.	1.1	57
150	<i>In Vivo</i> and <i>in Vitro</i> Complementation Study Comparing the Function of DnaK Chaperone Systems from Halophilic Lactic Acid Bacterium <i>Tetragenococcus halophilus</i> and <i>Escherichia coli</i> . Bioscience, Biotechnology and Biochemistry, 2008, 72, 811-822.	0.6	13
151	Cooperative Transport between NukFEG and NukH in Immunity against the Lantibiotic Nukacin ISK-1 Produced by <i>Staphylococcus warneri</i> ISK-1. Journal of Bacteriology, 2008, 190, 356-362.	1.0	29
152	Binding Specificity of the Lantibiotic-Binding Immunity Protein NukH. Applied and Environmental Microbiology, 2008, 74, 7613-7619.	1.4	11
153	ã,°ãf©ãfé™1⁄2性ç″è在ã®æ—°ã⊷ã,,å^†åã,∙ãf£ãfšãfãf³ã,∙ã,¹ãf†ãf. Kagaku To Seibutsu, 2008, 46, 237-244.	0.0	0
154	The proper ratio of GrpE to DnaK is important for protein quality control by the DnaK–DnaJ–GrpE chaperone system and for cell division. Microbiology (United Kingdom), 2008, 154, 1876-1885.	0.7	48
155	Structural Analysis and Characterization of Lacticin Q, a Novel Bacteriocin Belonging to a New Family of Unmodified Bacteriocins of Gram-Positive Bacteria. Applied and Environmental Microbiology, 2007, 73, 2871-2877.	1.4	141
156	Lantibiotic Engineering: Molecular Characterization and Exploitation of Lantibiotic-Synthesizing Enzymes for Peptide Engineering. Journal of Molecular Microbiology and Biotechnology, 2007, 13, 235-242.	1.0	19
157	A gram-negative characteristic segment inEscherichia coliDnaK is essential for the ATP-dependent cooperative function with the co-chaperones DnaJ and GrpE. FEBS Letters, 2007, 581, 2993-2999.	1.3	21
158	Kinetic modeling and sensitivity analysis of acetone–butanol–ethanol production. Journal of Biotechnology, 2007, 131, 45-56.	1.9	118
159	Calculation of metabolic flow of xylose in Lactococcus lactis. Journal of Bioscience and Bioengineering, 2007, 103, 92-94.	1.1	14
160	Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen. Journal of Bioscience and Bioengineering, 2007, 104, 238-240.	1.1	102
161	Molecular Monitoring of Bacterial Community Structure in Long-Aged Nukadoko: Pickling Bed of Fermented Rice Bran Dominated by Slow-Growing Lactobacilli. Journal of Bioscience and Bioengineering, 2007, 104, 481-489.	1.1	43
162	Characterization and Structure Analysis of a Novel Bacteriocin, Lacticin Z, Produced by <i>Lactococcus lactis</i> QU 14. Bioscience, Biotechnology and Biochemistry, 2007, 71, 1984-1992.	0.6	62

#	Article	IF	CITATIONS
163	Direct l-lactic acid fermentation with sago starch by a novel amylolytic lactic acid bacterium, Enterococcus faecium. Enzyme and Microbial Technology, 2007, 41, 149-155.	1.6	78
164	Bacteriocin detection by liquid chromatography/mass spectrometry for rapid identification. Journal of Applied Microbiology, 2007, 104, 071010063119024-???.	1.4	44
165	Xylooligosaccharide fermentation with Leuconostoc lactis. Journal of Bioscience and Bioengineering, 2006, 101, 415-420.	1.1	49
166	Lantibiotics: Insight and foresight for new paradigm. Journal of Bioscience and Bioengineering, 2006, 102, 139-149.	1.1	87
167	Lysine-Oriented Charges Trigger the Membrane Binding and Activity of Nukacin ISK-1. Applied and Environmental Microbiology, 2006, 72, 6012-6017.	1.4	32
168	Structural and Functional Conversion of Molecular Chaperone ClpB from the Gram-Positive Halophilic Lactic Acid Bacterium Tetragenococcus halophilus Mediated by ATP and Stress. Journal of Bacteriology, 2006, 188, 8070-8078.	1.0	22
169	Lactococcin Q, a Novel Two-Peptide Bacteriocin Produced by Lactococcus lactis QU 4. Applied and Environmental Microbiology, 2006, 72, 3383-3389.	1.4	86
170	Identification and production of a bacteriocin from Enterococcus mundtii QU 2 isolated from soybean. Journal of Applied Microbiology, 2005, 99, 1181-1190.	1.4	78
171	Description of complete DNA sequence of two plasmids from the nukacin ISK-1 producer, Staphylococcus warneri ISK-1. Plasmid, 2005, 53, 164-178.	0.4	26
172	Characterization of functional domains of lantibiotic-binding immunity protein, NukH, fromStaphylococcus warneriISK-1. FEMS Microbiology Letters, 2005, 250, 19-25.	0.7	19
173	Localization and Interaction of the Biosynthetic Proteins for the Lantibiotic, Nukacin ISK-1. Bioscience, Biotechnology and Biochemistry, 2005, 69, 1341-1347.	0.6	24
174	High production of acetone–butanol–ethanol with high cell density culture by cell-recycling and bleeding. Journal of Biotechnology, 2005, 120, 197-206.	1.9	124
175	Reconstitution and function of Tetragenococcus halophila chaperonin 60 tetradecamer. Journal of Bioscience and Bioengineering, 2005, 99, 30-37.	1.1	6
176	A Novel Type of Immunity Protein, NukH, for the Lantibiotic Nukacin ISK-1 Produced byStaphylococcus warneriISK-1. Bioscience, Biotechnology and Biochemistry, 2005, 69, 1403-1410.	0.6	47
177	Lanthionine introduction into nukacin ISK-1 prepeptide by co-expression with modification enzyme NukM in Escherichia coli. Biochemical and Biophysical Research Communications, 2005, 336, 507-513.	1.0	60
178	High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. Journal of Bioscience and Bioengineering, 2004, 98, 263-268.	1.1	178
179	Heterologous expression and functional analysis of the gene cluster for the biosynthesis of and immunity to the lantibiotic, nukacin ISK-1. Journal of Bioscience and Bioengineering, 2004, 98, 429-436.	1.1	34
180	Characterization of a Gene Cluster ofStaphylococcus warneriISK-1 Encoding the Biosynthesis of and Immunity to the Lantibiotic, Nukacin ISK-1. Bioscience, Biotechnology and Biochemistry, 2004, 68, 1663-1671.	0.6	33

#	Article	IF	CITATIONS
181	Title is missing!. ScienceAsia, 2004, 30, 115.	0.2	17
182	Effect of heterologous expression of molecular chaperone DnaK from Tetragenococcus halophilus on salinity adaptation of Escherichia coli. Journal of Bioscience and Bioengineering, 2003, 96, 129-133.	1.1	17
183	Identification of the Lantibiotic Nisin Q, a New Natural Nisin Variant Produced byLactococcus lactis61-14 Isolated from a River in Japan. Bioscience, Biotechnology and Biochemistry, 2003, 67, 1616-1619.	0.6	139
184	ä¹³é,èŒã®åឆæ§~ãªæ–°æ©Ÿèƒ½ã,'æ±,ã,ã┥. Nippon Nogeikagaku Kaishi, 2003, 77, 741-743.	0.0	0
185	Synchronized fresh cell bioreactor system for continuous l-(+)-lactic acid production using Lactococcus lactis IO-1 in hydrolysed sago starch. Journal of Bioscience and Bioengineering, 2002, 93, 281-287.	1.1	41
186	Molecular characterization and regulatory analysis of dnaK operon of halophilic lactic acid bacterium Tetragenococcus halophila. Journal of Bioscience and Bioengineering, 2002, 93, 388-394.	1.1	16
187	Two different pathways for D -xylose metabolism and the effect of xylose concentration on the yield coefficient of L -lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Applied Microbiology and Biotechnology, 2002, 60, 160-167.	1.7	146
188	Synchronized Fresh Cell Bioreactor System for Continuous <sc><font size="<br">-1>L</sc> -(+)-Lactic Acid Production Using Lactococcus lactis IO-1 in Hydrolysed Sago Starch. Journal of Bioscience and Bioengineering, 2002, 93, 281-287.	1.1	19
189	The effect of osmotic stress on the production of nukacin ISK-1 from Staphylococcus warneri ISK-1. Applied Microbiology and Biotechnology, 2001, 56, 496-501.	1.7	14
190	Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81. International Journal of Food Microbiology, 2001, 70, 291-301.	2.1	106
191	Taxonomic position of new bacteriocin (nukacin ISK-1) producer isolated from long-aged Nukadoko Journal of General and Applied Microbiology, 2001, 47, 143-147.	0.4	12
192	Improved Purification and Structural Determination of Enterocin B from <i>Enterococcus faecium</i> WHE 81. Japanese Journal of Lactic Acid Bacteria, 2000, 10, 103-109.	0.1	0
193	Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiology Reviews, 2000, 24, 85-106.	3.9	469
194	A Novel Lantibiotic, Nukacin ISK-1, of Staphylococcus warneri ISK-1: Cloning of the Structural Gene and Identification of the Structure. Bioscience, Biotechnology and Biochemistry, 2000, 64, 2420-2428.	0.6	87
195	Extractive acetone-butanol-ethanol fermentation using methylated crude palm oil as extractant in batch culture of Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Journal of Bioscience and Bioengineering, 1999, 87, 352-356.	1.1	101
196	Investigation of Bacteriocin Production and Purification from Nukadoko Isolates Displaying Antimicrobial Activity. Japanese Journal of Lactic Acid Bacteria, 1999, 10, 29-37.	0.1	8
197	Bacteriocins Produced by Lactic Acid Bacteria and the Applications. Japanese Journal of Lactic Acid Bacteria, 1999, 10, 2-18.	0.1	2
198	Growth-Stimulating Effect of Shochu Wastewater on Lactic Acid Bacteria and Bifidobacteria. Annals of the New York Academy of Sciences, 1998, 864, 276-279.	1.8	17

#	Article	IF	CITATIONS
199	Novel Bacteriocin of Pediococcus sp. ISK-1 Isolated from Well-Aged Bed of Fermented Rice Bran. Annals of the New York Academy of Sciences, 1998, 864, 345-348.	1.8	48
200	Purification, Identification, and Effective Production of a Peptide Antibiotic Produced by Lactococcus lactis IO-1 (JCM 7638). Annals of the New York Academy of Sciences, 1998, 864, 422-427.	1.8	11
201	Purification and Partial Identification of Bacteriocin ISK-1, a New Lantibiotic Produced byPediococcussp. ISK-1. Bioscience, Biotechnology and Biochemistry, 1998, 62, 2341-2345.	0.6	38
202	Nisin Z Production byLactococcus lactisIO-1 Using Xylose as a Carbon Source. Bioscience, Biotechnology and Biochemistry, 1998, 62, 1022-1024.	0.6	16
203	Some Characteristics of Nisin Z, a Peptide Antibiotic Produced by Lactococcus lactis IO-1 Food Science and Technology Research, 1998, 4, 290-294.	0.2	21
204	A Bacteriocin of Strain <i>Pediococcus</i> sp. ISK-1 Isolated from <i>Nukadoko</i> , Bed of Fermented Rice Bran. Bioscience, Biotechnology and Biochemistry, 1997, 61, 1049-1051.	0.6	34
205	Lantibiotic nisin Z fermentative production by Lactococcus lactis IO-1: relationship between production of the lantibiotic and lactate and cell growth. Applied Microbiology and Biotechnology, 1996, 45, 36-40.	1.7	158
206	Growth-stimulating effects of natural rubber serum on Bifidobacterium bifidum. Journal of Bioscience and Bioengineering, 1996, 82, 165-167.	0.9	9
207	11β-Hydroxylation of Cortexolone (Reichstein Compound S) to Hydrocortisone by <i>Curvularia lunata</i> Entrapped in Photo-Cross-Linked Resin Gels. Applied and Environmental Microbiology, 1983, 45, 436-443.	1.4	65
208	Class IIa bacteriocins: biosynthesis, structure and activity. , 0, .		26

Class IIa bacteriocins: biosynthesis, structure and activity. , 0, . 208