
Andrea Ruffini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5827545/publications.pdf Version: 2024-02-01

ANDREA PHEEINI

#	Article	IF	CITATIONS
1	Graphene Oxide Nanoplatforms to Enhance Cisplatin-Based Drug Delivery in Anticancer Therapy. Nanomaterials, 2022, 12, 2372.	4.1	11
2	Unconventional, Nature-Inspired Approaches to Develop Bioceramics for Regenerative Medicine. , 2021, , 758-771.		0
3	In Vitro Osteoinductivity Assay of Hydroxylapatite Scaffolds, Obtained with Biomorphic Transformation Processes, Assessed Using Human Adipose Stem Cell Cultures. International Journal of Molecular Sciences, 2021, 22, 7092.	4.1	7
4	Nature-Inspired Unconventional Approaches to Develop 3D Bioceramic Scaffolds with Enhanced Regenerative Ability. Biomedicines, 2021, 9, 916.	3.2	14
5	Bone Regeneration in Load-Bearing Segmental Defects, Guided by Biomorphic, Hierarchically Structured Apatitic Scaffold. Frontiers in Bioengineering and Biotechnology, 2021, 9, 734486.	4.1	19
6	Biomorphic Transformations: A Leap Forward in Getting Nanostructured 3-D Bioceramics. Frontiers in Chemistry, 2021, 9, 728907.	3.6	1
7	Ceramics with the signature of wood: a mechanical insight. Materials Today Bio, 2020, 5, 100032.	5.5	16
8	Hierarchical porosity inherited by natural sources affects the mechanical and biological behaviour of bone scaffolds. Journal of the European Ceramic Society, 2020, 40, 1717-1727.	5.7	15
9	Heterogeneous chemistry in the 3-D state: an original approach to generate bioactive, mechanically-competent bone scaffolds. Biomaterials Science, 2019, 7, 307-321.	5.4	29
10	Nature-Inspired Processes and Structures: New Paradigms to Develop Highly Bioactive Devices for Hard Tissue Regeneration. , 2019, , .		4
11	Biomineralization of a titanium-modified hydroxyapatite semiconductor on conductive wool fibers. Journal of Materials Chemistry B, 2017, 5, 7608-7621.	5.8	21
12	Tissue engineering and biomimetics with bioceramics. , 2017, , 407-432.		2
13	Nature-Inspired Nanotechnology and Smart Magnetic Activation: Two Groundbreaking Approaches Toward a New Generation of Biomaterials for Hard Tissue Regeneration. , 2016, , .		3
14	Hydroxyapatite: From Nanocrystals to Hybrid Nanocomposites for Regenerative Medicine. , 2016, , 119-144.		4
15	Study of the chemical activation of hydroxyapatite rich ashes as raw materials for geopolymers. Ceramics International, 2015, 41, 9734-9744.	4.8	6
16	Hydroxyapatite: From Nanocrystals to Hybrid Nanocomposites for Regenerative Medicine. , 2015, , 1-26.		1
17	Biomimetic magnesium–carbonate-apatite nanocrystals endowed with strontium ions as anti-osteoporotic trigger. Materials Science and Engineering C, 2014, 35, 212-219.	7.3	64
18	Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3. Journal of Materials Science: Materials in Medicine, 2014, 25, 2277-2285.	3.6	41

ANDREA RUFFINI

#	Article	IF	CITATIONS
19	Study of the hydrothermal transformation of wood-derived calcium carbonate into 3D hierarchically organized hydroxyapatite. Chemical Engineering Journal, 2013, 217, 150-158.	12.7	27
20	The influence of process parameters on in situ inorganic foaming of alkali-bonded SiC based foams. Ceramics International, 2012, 38, 3351-3359.	4.8	29
21	Alkali-bonded SiC based foams. Journal of the European Ceramic Society, 2012, 32, 1907-1913.	5.7	39
22	Biomimesis and biomorphic transformations: New concepts applied to bone regeneration. Journal of Biotechnology, 2011, 156, 347-355.	3.8	48
23	SiC-based refractory paints prepared with alkali aluminosilicate binders. Journal of the European Ceramic Society, 2011, 31, 2155-2165.	5.7	38
24	From wood to bone: multi-step process to convert wood hierarchical structures into biomimetic hydroxyapatite scaffolds for bone tissue engineering. Journal of Materials Chemistry, 2009, 19, 4973.	6.7	140
25	Towards Hierarchically Organized Scaffolds for Bone Substitutes from Wood Structures. Key Engineering Materials, 2008, 361-363, 959-962.	0.4	2
26	PZT prepared by spray drying: From powder synthesis to electromechanical properties. Journal of the European Ceramic Society, 2005, 25, 3323-3334.	5.7	19
27	Ancient glass deterioration in mosaics of Pompeii. Surface Engineering, 2005, 21, 402-405.	2.2	10
28	Corrosion behavior of Si3N4–TiN composite in sulphuric acid. Corrosion Science, 2005, 47, 1666-1677.	6.6	16
29	Corrosion of Electroconductive AlN-SiC-MoSi ₂ Composite in NaOH Solution. Key Engineering Materials, 2004, 264-268, 945-948.	0.4	0
30	Corrosion of Si3N4–MoSi2 ceramic composite in acid- and basic-aqueous environments: surface modification and properties degradation. Applied Surface Science, 2004, 225, 100-115.	6.1	6
31	Compositional and Technological Characteristics of the Inlay Wall Facing Ceramics of the Jamé Mosque in Esfahan (Iran). Key Engineering Materials, 2004, 264-268, 2403-2406.	0.4	2
32	Corrosion of hot pressed Si3N4–TiN composite in sulphuric acid aqueous solution. Corrosion Science, 2003, 45, 2525-2539.	6.6	8
33	Corrosion of Electroconductive AlN-SiC-MoSi2Ceramic Composite in Sodium Hydroxide Aqueous Solution. Corrosion, 2003, 59, 765-773.	1.1	4
34	Orimulsion fly ash in clay bricks—part 3. Journal of the European Ceramic Society, 2002, 22, 1749-1758.	5.7	28
35	Recycling of Steel Slag in Clay Brick Production. Key Engineering Materials, 2001, 206-213, 835-838.	0.4	3