
Mariann Bienz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5827487/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective function of the PDZ domain of Dishevelled in noncanonical Wnt signalling. Journal of Cell Science, 2022, 135, .	1.2	3
2	The deubiquitinase TRABID stabilizes the K29/K48-specific E3 ubiquitin ligase HECTD1. Journal of Biological Chemistry, 2021, 296, 100246.	1.6	25
3	Regulation of Dishevelled DEP domain swapping by conserved phosphorylation sites. Proceedings of the United States of America, 2021, 118, .	3.3	7
4	Head-to-Tail Polymerization in the Assembly of Biomolecular Condensates. Cell, 2020, 182, 799-811.	13.5	56
5	DIX Domain Polymerization Drives Assembly of Plant Cell Polarity Complexes. Cell, 2020, 180, 427-439.e12.	13.5	54
6	Proteogenomics analysis unveils a TFG-RET gene fusion and druggable targets in papillary thyroid carcinomas. Nature Communications, 2020, 11, 2056.	5.8	19
7	Limited dishevelled/Axin oligomerization determines efficiency of Wnt/β-catenin signal transduction. ELife, 2020, 9, .	2.8	41
8	Feedback control of Wnt signaling based on ultrastable histidine cluster co-aggregation between Naked/NKD and Axin. ELife, 2020, 9, .	2.8	9
9	Bcl9 and Pygo synergise downstream of Apc to effect intestinal neoplasia in FAP mouse models. Nature Communications, 2019, 10, 724.	5.8	31
10	Rotational symmetry of the structured Chip/LDB-SSDP core module of the Wnt enhanceosome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20977-20983.	3.3	10
11	A direct heterotypic interaction between the DIX domains of Dishevelled and Axin mediates signaling to β-catenin. Science Signaling, 2019, 12, .	1.6	15
12	Multiprotein complexes governing Wnt signal transduction. Current Opinion in Cell Biology, 2018, 51, 42-49.	2.6	155
13	Histone modifications for chromatin dynamics and cellular plasticity. Journal of Molecular Biology, 2017, 429, 1921-1923.	2.0	2
14	Wnt-Dependent Inactivation of the Groucho/TLE Co-repressor by the HECT E3ÂUbiquitin Ligase Hyd/UBR5. Molecular Cell, 2017, 67, 181-193.e5.	4.5	51
15	Constitutive scaffolding of multiple Wnt enhanceosome components by Legless/BCL9. ELife, 2017, 6, .	2.8	69
16	Essential role of the Dishevelled DEP domain in a Wnt-dependent human-cell-based complementation assay. Journal of Cell Science, 2016, 129, 3892-3902.	1.2	65
17	Wnt Signalosome Assembly by DEP Domain Swapping of Dishevelled. Molecular Cell, 2016, 64, 92-104.	4.5	125
18	An ancient Pygo-dependent Wnt enhanceosome integrated by Chip/LDB-SSDP. ELife, 2015, 4, .	2.8	49

MARIANN BIENZ

#	Article	IF	CITATIONS
19	Disinhibition of the HECT E3 ubiquitin ligase WWP2 by polymerized Dishevelled. Open Biology, 2015, 5, 150185.	1.5	37
20	Ubiquitination of the Dishevelled DIX domain blocks its head-to-tail polymerization. Nature Communications, 2015, 6, 6718.	5.8	50
21	LEF1 and B9L Shield β-Catenin from Inactivation by Axin, Desensitizing Colorectal Cancer Cells to Tankyrase Inhibitors. Cancer Research, 2014, 74, 1495-1505.	0.4	63
22	Boosting Wnt activity during colorectal cancer progression through selective hypermethylation of Wnt signaling antagonists. BMC Cancer, 2014, 14, 891.	1.1	64
23	Competitive Binding of a Benzimidazole to the Histone-Binding Pocket of the Pygo PHD Finger. ACS Chemical Biology, 2014, 9, 2864-2874.	1.6	60
24	Signalosome assembly by domains undergoing dynamic head-to-tail polymerization. Trends in Biochemical Sciences, 2014, 39, 487-495.	3.7	111
25	Evolutionary Adaptation of the Fly Pygo PHD Finger toward Recognizing Histone H3 Tail Methylated at Arginine 2. Structure, 2013, 21, 2208-2220.	1.6	16
26	An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains. Nature Structural and Molecular Biology, 2012, 19, 62-71.	3.6	122
27	An intrinsically labile α-helix abutting the BCL9-binding site of β-catenin is required for its inhibition by carnosic acid. Nature Communications, 2012, 3, 680.	5.8	102
28	A Lipid Linchpin for Wnt-Fz Docking. Science, 2012, 337, 44-45.	6.0	5
29	Inhibition of GSK3 by Wnt signalling – two contrasting models. Journal of Cell Science, 2011, 124, 3537-3544.	1.2	158
30	Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating β-catenin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1937-1942.	3.3	185
31	The Adenomatous polyposis coli tumour suppressor is essential for Axin complex assembly and function and opposes Axin's interaction with Dishevelled. Open Biology, 2011, 1, 110013.	1.5	60
32	Dvl2 Promotes Intestinal Length and Neoplasia in the <i>Apc Min</i> Mouse Model for Colorectal Cancer. Cancer Research, 2010, 70, 6629-6638.	0.4	48
33	Stability elements in the LRP6 cytoplasmic tail confer efficient signalling upon DIX-dependent polymerization. Journal of Cell Science, 2010, 123, 1588-1599.	1.2	94
34	Allosteric Remodelling of the Histone H3 Binding Pocket in the Pygo2 PHD Finger Triggered by Its Binding to the B9L/BCL9 Co-Factor. Journal of Molecular Biology, 2010, 401, 969-984.	2.0	43
35	The function of BCL9 in Wnt/ \hat{l}^2 -catenin signaling and colorectal cancer cells. BMC Cancer, 2008, 8, 199.	1.1	96
36	Decoding of Methylated Histone H3 Tail by the Pygo-BCL9 Wnt Signaling Complex. Molecular Cell, 2008, 30, 507-518.	4.5	166

Mariann Bienz

#	Article	IF	CITATIONS
37	A role of Pygopus as an anti-repressor in facilitating Wnt-dependent transcription. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19324-19329.	3.3	33
38	Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes and Development, 2008, 22, 528-542.	2.7	111
39	Wnt Induces LRP6 Signalosomes and Promotes Dishevelled-Dependent LRP6 Phosphorylation. Science, 2007, 316, 1619-1622.	6.0	774
40	Dynamic recruitment of axin by Dishevelled protein assemblies. Journal of Cell Science, 2007, 120, 2402-2412.	1.2	195
41	1P018 Structural basis of dynamic polymerization of D1X domains: a revised model of Wnt signaling(Proteins-structure and structure-function relationship,Oral Presentations). Seibutsu Butsuri, 2007, 47, S28.	0.0	Ο
42	The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nature Structural and Molecular Biology, 2007, 14, 484-492.	3.6	365
43	Wingless-Independent Association of Pygopus with dTCF Target Genes. Current Biology, 2007, 17, 556-561.	1.8	52
44	The PHD finger, a nuclear protein-interaction domain. Trends in Biochemical Sciences, 2006, 31, 35-40.	3.7	351
45	β-Catenin: A Pivot between Cell Adhesion and Wnt Signalling. Current Biology, 2005, 15, R64-R67.	1.8	268
46	The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles. Journal of Cell Science, 2005, 118, 5269-5277.	1.2	184
47	Pygopus Residues Required for its Binding to Legless Are Critical for Transcription and Development. Journal of Biological Chemistry, 2004, 279, 5177-5183.	1.6	74
48	Pygopus and Legless target Armadillo/β-catenin to the nucleus to enable its transcriptional co-activator function. Nature Cell Biology, 2004, 6, 626-633.	4.6	193
49	Adenomatous polyposis coli proteins and cell adhesion. Current Opinion in Cell Biology, 2004, 16, 528-535.	2.6	71
50	Intracellular shuttling of a Drosophila APC tumour suppressor homolog. BMC Cell Biology, 2004, 5, 37.	3.0	10
51	The APC Tumor Suppressor Binds to C-Terminal Binding Protein to Divert Nuclear β-Catenin from TCF. Developmental Cell, 2004, 7, 677-685.	3.1	120
52	Nuclear export of the APC tumour suppressor controls β-catenin function in transcription. EMBO Journal, 2003, 22, 1101-1113.	3.5	160
53	APC. Current Biology, 2003, 13, R215-R216.	1.8	5
54	A Role of Dishevelled in Relocating Axin to the Plasma Membrane during Wingless Signaling. Current Biology, 2003, 13, 960-966.	1.8	263

MARIANN BIENZ

#	Article	IF	CITATIONS
55	Armadillo∫î²-catenin signals in the nucleus – proof beyond a reasonable doubt?. Nature Cell Biology, 2003, 5, 179-182.	4.6	142
56	The transcriptional repressor Brinker antagonizes Wingless signaling. Genes and Development, 2002, 16, 1828-1838.	2.7	37
57	A Drosophila APC tumour suppressor homologue functions in cellular adhesion. Nature Cell Biology, 2002, 4, 208-213.	4.6	70
58	A new nuclear component of the Wnt signalling pathway. Nature Cell Biology, 2002, 4, 367-373.	4.6	260
59	The subcellular destinations of apc proteins. Nature Reviews Molecular Cell Biology, 2002, 3, 328-338.	16.1	221
60	EGF receptor/Rolled MAP kinase signalling protects cells against activated Armadillo in theDrosophilaeye. EMBO Reports, 2001, 2, 157-162.	2.0	49
61	Spindles cotton on to junctions, APC and EB1. Nature Cell Biology, 2001, 3, E67-E68.	4.6	67
62	The APC tumour suppressor has a nuclear export function. Nature, 2000, 406, 1009-1012.	13.7	317
63	Actin-dependent membrane association of a Drosophila epithelial APC protein and its effect on junctional Armadillo. Current Biology, 2000, 10, 1339-1348.	1.8	48
64	Linking Colorectal Cancer to Wnt Signaling. Cell, 2000, 103, 311-320.	13.5	1,386
65	An autoregulatory function of Dfos during Drosophila endoderm induction. Mechanisms of Development, 2000, 98, 71-76.	1.7	12
66	A new Drosophila APC homologue associated with adhesive zones of epithelial cells. Nature Cell Biology, 1999, 1, 144-151.	4.6	113
67	The control of beta-catenin and TCF during embryonic development and cancer. , 1999, 18, 231-246.		56
68	APC: the plot thickens. Current Opinion in Genetics and Development, 1999, 9, 595-603.	1.5	91
69	Ubiquitous expression of a Drosophila adenomatous polyposis coli homolog and its localization in cortical actin caps. Mechanisms of Development, 1999, 84, 69-73.	1.7	26
69 70	Ubiquitous expression of a Drosophila adenomatous polyposis coli homolog and its localization in		26 36
	Ubiquitous expression of a Drosophila adenomatous polyposis coli homolog and its localization in cortical actin caps. Mechanisms of Development, 1999, 84, 69-73.	1.7	

MARIANN BIENZ

#	Article	IF	CITATIONS
73	Endoderm induction in Drosophila: the nuclear targets of the inducing signals. Current Opinion in Genetics and Development, 1997, 7, 683-688.	1.5	53
74	LEF-1, a Nuclear Factor Coordinating Signaling Inputs from wingless and decapentaplegic. Cell, 1997, 88, 777-787.	13.5	414
75	Induction of the endoderm inDrosophila. Seminars in Cell and Developmental Biology, 1996, 7, 113-119.	2.3	24
76	Transcriptional silencing of homeotic genes indrosophila. BioEssays, 1995, 17, 775-784.	1.2	95
77	Specification of a single cell type by a Drosophila homeotic gene. Cell, 1994, 76, 689-702.	13.5	97
78	Induction across germ layers in Drosophila mediated by a genetic cascade. Cell, 1990, 62, 261-268.	13.5	353
79	Sexist ads. Nature, 1986, 321, 106-106.	13.7	1
80	The role of an upstream sequence in the transcription of a human transfer RNA gene. Biochemical Society Transactions, 1985, 13, 754-754.	1.6	1
81	Studies on a human tRNA gene. Biochemical Society Transactions, 1984, 12, 282-282.	1.6	0