
Jean François Robillard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5827428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heat dissipation in partially perforated phononic nano-membranes with periodicities below 100 nm. APL Materials, 2022, 10, 051113.	5.1	3
2	Large-area femtosecond laser milling of silicon employing trench analysis. Optics and Laser Technology, 2021, 138, 106866.	4.6	6
3	Substrate Engineering of Inductors on SOI for Improvement of Q-Factor and Application in LNA. IEEE Journal of the Electron Devices Society, 2020, 8, 959-969.	2.1	10
4	Thermal Analysis of Ultimately-Thinned-and-Transfer-Bonded CMOS on Mechanically Flexible Foils. IEEE Journal of the Electron Devices Society, 2019, 7, 973-978.	2.1	4
5	Influence of amorphous layers on the thermal conductivity of phononic crystals. Physical Review B, 2018, 97, .	3.2	12
6	Performance Evaluation of Silicon Based Thermoelectric Generators Interest of Coupling Low Thermal Conductivity Thin Films and a Planar Architecture. , 2018, , .		0
7	Thermal conductivity of deca-nanometric patterned Si membranes by multiscale simulations. International Journal of Heat and Mass Transfer, 2018, 126, 830-835.	4.8	6
8	Native-oxide limited cross-plane thermal transport in suspended silicon membranes revealed by scanning thermal microscopy. Applied Physics Letters, 2017, 111, .	3.3	15
9	Cost Effective Laser Structuration of Optical Waveguides on Thin Glass Interposer. Journal of Lightwave Technology, 2017, 35, 4445-4450.	4.6	0
10	Fabrication of Thin-Film Silicon Membranes With Phononic Crystals for Thermal Conductivity Measurements. IEEE Electron Device Letters, 2016, 37, 1358-1361.	3.9	21
11	Synthesis and characterization of low work function alkali oxide thin films for unconventional thermionic energy converters. Journal of Applied Physics, 2016, 120, .	2.5	6
12	Application-oriented performance of RF CMOS technologies on flexible substrates. , 2015, , .		10
13	Thermoelectric energy conversion: How good can silicon be?. Materials Letters, 2015, 157, 193-196.	2.6	21
14	Ultra-foldable/stretchable wideband RF interconnects using laser ablation of metal film on a flexible substrate. , 2015, , .		4
15	Toward quantitative modeling of silicon phononic thermocrystals. Applied Physics Letters, 2015, 106, .	3.3	13
16	Fabrication of integrated micrometer platform for thermoelectric measurements. , 2014, , .		10
17	Unconventional Thin-Film Thermoelectric Converters: Structure, Simulation, and Comparative Study. Journal of Electronic Materials, 2014, 43, 2109-2114.	2.2	79
18	Phononic engineering of silicon using "dots on the fly―e-beam lithography and plasma etching. Microelectronic Engineering, 2014, 121, 131-134.	2.4	78

Jean François Robillard

#	Article	IF	CITATIONS
19	Invariance of DC and RF Characteristics of Mechanically Flexible CMOS Technology on Plastic. Engineering Materials, 2014, , 81-103.	0.6	0
20	A converging route towards very high frequency, mechanically flexible, and performance stable integrated electronics. Journal of Applied Physics, 2013, 113, 153701.	2.5	16
21	Phase-controlling phononic crystal. Applied Physics Letters, 2011, 98, .	3.3	23
22	Resolution limit of a phononic crystal superlens. Physical Review B, 2011, 83, .	3.2	57
23	Phase-control in two-dimensional phononic crystals. Journal of Applied Physics, 2011, 110, .	2.5	10
24	Phase-controlling phononic crystals: Realization of acoustic Boolean logic gates. Journal of the Acoustical Society of America, 2011, 130, 1919-1925.	1.1	32
25	Tunable magnetoelastic phononic crystals. Applied Physics Letters, 2009, 95, .	3.3	181
26	Collective acoustic modes in various two-dimensional crystals by ultrafast acoustics: Theory and experiment. Physical Review B, 2008, 78, .	3.2	40
27	Time-resolved vibrations of two-dimensional hypersonic phononic crystals. Physical Review B, 2007, 76, .	3.2	48
28	Picosecond ultrasonic investigations of phonons in 2D nano-scaled lattices. Journal of Physics: Conference Series, 2007, 92, 012027.	0.4	0
29	High-laser-wavelength sensitivity of the picosecond ultrasonic response in transparent thin films. Physical Review B. 2006. 74	3.2	36