Dorota Kurek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5826526/publications.pdf

Version: 2024-02-01

23 papers

2,058 citations

20 h-index 642732 23 g-index

23 all docs

23 docs citations

23 times ranked 3912 citing authors

#	Article	IF	Citations
1	Intestinal Epithelium Tubules on a Chip. Methods in Molecular Biology, 2022, 2373, 87-105.	0.9	2
2	In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed. Angiogenesis, 2022, 25, 455-470.	7.2	31
3	Culture and analysis of kidney tubuloids and perfused tubuloid cells-on-a-chip. Nature Protocols, 2021, 16, 2023-2050.	12.0	43
4	Direct On-Chip Differentiation of Intestinal Tubules from Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2020, 21, 4964.	4.1	49
5	In vitro capture and characterization of embryonic rosette-stage pluripotency between naive and primed states. Nature Cell Biology, 2020, 22, 534-545.	10.3	91
6	An Intestine-on-a-Chip Model of Plug-and-Play Modularity to Study Inflammatory Processes. SLAS Technology, 2020, 25, 585-597.	1.9	49
7	Development of a Gut-on-a-Chip Model for High Throughput Disease Modeling and Drug Discovery. International Journal of Molecular Sciences, 2019, 20, 5661.	4.1	118
8	Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nature Communications, 2017, 8, 262.	12.8	207
9	Characterization of Histone Modifications Associated with Inactive X-Chromosome in Trophoblast Stem Cells, eXtra-Embryonic Endoderm Cells and in In Vitro Derived Undifferentiated and Differentiated Epiblast Like Stem Cells. PLoS ONE, 2016, 11, e0167154.	2.5	7
10	Endogenous WNT Signals Mediate BMP-Induced and Spontaneous Differentiation of Epiblast Stem Cells and Human Embryonic Stem Cells. Stem Cell Reports, 2015, 4, 114-128.	4.8	122
11	IL-4 Downregulates IL- \hat{I}^2 and IL-6 and Induces GATA3 in Psoriatic Epidermal Cells: Route of Action of a Th2 Cytokine. Journal of Immunology, 2015, 195, 1744-1752.	0.8	43
12	$HIF1\hat{l}\pm$ is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo. Stem Cell Research, 2014, 12, 24-35.	0.7	63
13	Canonical Wnt Signaling Negatively Modulates Regulatory T Cell Function. Immunity, 2013, 39, 298-310.	14.3	183
14	Identification of Multiple Subsets of Ventral Interneurons and Differential Distribution along the Rostrocaudal Axis of the Developing Spinal Cord. PLoS ONE, 2013, 8, e70325.	2.5	84
15	The signaling requirements for mouse embryonic stem cells. Cell Cycle, 2012, 11, 207-208.	2.6	3
16	Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nature Cell Biology, 2011, 13, 1070-1075.	10.3	413
17	GATA3 Expression Is Decreased in Psoriasis and during Epidermal Regeneration; Induction by Narrow-Band UVB and IL-4. PLoS ONE, 2011, 6, e19806.	2.5	44
18	Effective Treatment of Psoriasis with Narrow-Band UVB Phototherapy Is Linked to Suppression of the IFN and Th17 Pathways. Journal of Investigative Dermatology, 2011, 131, 1547-1558.	0.7	129

DOROTA KUREK

#	Article	IF	CITATION
19	The Gata3 Transcription Factor Is Required for the Survival of Embryonic and Adult Sympathetic Neurons. Journal of Neuroscience, 2010, 30, 10833-10843.	3.6	81
20	Gata3-deficient mice develop parathyroid abnormalities due to dysregulation of the parathyroid-specific transcription factor Gcm2. Journal of Clinical Investigation, 2010, 120, 2144-2155.	8.2	108
21	Transcriptome and phenotypic analysis reveals Gata3-dependent signalling pathways in murine hair follicles. Development (Cambridge), 2007, 134, 261-272.	2.5	81
22	GATA3 controls the expression of CD5 and the T cell receptor during CD4 T cell lineage development. European Journal of Immunology, 2007, 37, 1043-1052.	2.9	26
23	Hearing loss following Gata3 haploinsufficiency is caused by cochlear disorder. Neurobiology of Disease, 2004, 16, 169-178.	4.4	81