
Harold Marcotte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5826266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SARS-CoV-2–specific B- and T-cell immunity in a population-based study of young Swedish adults. Journal of Allergy and Clinical Immunology, 2022, 149, 65-75.e8.	2.9	27
2	X-Linked TLR7 Deficiency Underlies Critical COVID-19 Pneumonia in a Male Patient with Ataxia-Telangiectasia. Journal of Clinical Immunology, 2022, 42, 1-9.	3.8	34
3	Inherited IFNAR1 Deficiency in a Child with Both Critical COVID-19 Pneumonia and Multisystem Inflammatory Syndrome. Journal of Clinical Immunology, 2022, 42, 471-483.	3.8	44
4	Immunity to SARS-CoV-2 up to 15Âmonths after infection. IScience, 2022, 25, 103743.	4.1	56
5	Human serum from SARS-CoV-2-vaccinated and COVID-19 patients shows reduced binding to the RBD of SARS-CoV-2 Omicron variant. BMC Medicine, 2022, 20, 102.	5.5	67
6	Heterologous immunization with inactivated vaccine followed by mRNA-booster elicits strong immunity against SARS-CoV-2 Omicron variant. Nature Communications, 2022, 13, 2670.	12.8	108
7	Persistence of SARS-CoV-2-specific B and TÂcell responses in convalescent COVID-19 patients 6–8Âmonths after the infection. Med, 2021, 2, 281-295.e4.	4.4	153
8	Advancing mechanistic understanding and bioengineering of probiotic lactobacilli and bifidobacteria by genome editing. Current Opinion in Biotechnology, 2021, 70, 75-82.	6.6	15
9	Antibody therapy for COVID-19. Current Opinion in Allergy and Clinical Immunology, 2021, 21, 553-558.	2.3	17
10	Lactobacilli Expressing Broadly Neutralizing Nanobodies against HIV-1 as Potential Vectors for HIV-1 Prophylaxis?. Vaccines, 2020, 8, 758.	4.4	8
11	Engineer probiotic bifidobacteria for food and biomedical applications - Current status and future prospective. Biotechnology Advances, 2020, 45, 107654.	11.7	36
12	Development of passive immunity against SARS-CoV-2 for management of immunodeficient patients—a perspective. Journal of Allergy and Clinical Immunology, 2020, 146, 58-60.	2.9	24
13	A Heterodimeric Antibody Fragment for Passive Immunotherapy Against Norovirus Infection. Journal of Infectious Diseases, 2020, 222, 470-478.	4.0	5
14	Clinical implications of experimental analyses of AID function on predictive computational tools: Challenge of missense variants. Clinical Genetics, 2020, 97, 844-856.	2.0	0
15	Clostridium difficile, the Difficult "Kloster―Fuelled by Antibiotics. Current Microbiology, 2019, 76, 774-782.	2.2	41
16	Putative Adhesion Factors in Vaginal Lactobacillus gasseri DSM 14869: Functional Characterization. Applied and Environmental Microbiology, 2019, 85, .	3.1	17
17	Inducible Plasmid Self-Destruction (IPSD) Assisted Genome Engineering in Lactobacilli and Bifidobacteria. ACS Synthetic Biology, 2019, 8, 1723-1729.	3.8	27
18	An exploratory pilot study evaluating the supplementation of standard antibiotic therapy with probiotic lactobacilli in south African women with bacterial vaginosis. BMC Infectious Diseases, 2019, 19, 824.	2.9	21

HAROLD MARCOTTE

#	Article	IF	CITATIONS
19	Our gut microbiota: a long walk to homeostasis. Beneficial Microbes, 2018, 9, 3-20.	2.4	39
20	Characterization and complete genome sequences of L. rhamnosus DSM 14870 and L. gasseri DSM 14869 contained in the EcoVag® probiotic vaginal capsules. Microbiological Research, 2017, 205, 88-98.	5.3	29
21	Lactobacillus delivery of bioactive interleukin-22. Microbial Cell Factories, 2017, 16, 148.	4.0	14
22	Fusion of the mouse IgG1 Fc domain to the VHH fragment (ARP1) enhances protection in a mouse model of rotavirus. Scientific Reports, 2016, 6, 30171.	3.3	21
23	Neutralization of Clostridium difficile Toxin B Mediated by Engineered Lactobacilli That Produce Single-Domain Antibodies. Infection and Immunity, 2016, 84, 395-406.	2.2	47
24	Oral Delivery of Pentameric Glucagon-Like Peptide-1 by Recombinant Lactobacillus in Diabetic Rats. PLoS ONE, 2016, 11, e0162733.	2.5	22
25	Passive Immunization. , 2015, , 1403-1434.		19
26	An Exopolysaccharide-Deficient Mutant of Lactobacillus rhamnosus GG Efficiently Displays a Protective Llama Antibody Fragment against Rotavirus on Its Surface. Applied and Environmental Microbiology, 2015, 81, 5784-5793.	3.1	24
27	Vaginal colonisation by probiotic lactobacilli and clinical outcome in women conventionally treated for bacterial vaginosis and yeast infection. BMC Infectious Diseases, 2015, 15, 255.	2.9	66
28	Co-Expression of Anti-Rotavirus Proteins (Llama VHH Antibody Fragments) in Lactobacillus: Development and Functionality of Vectors Containing Two Expression Cassettes in Tandem. PLoS ONE, 2014, 9, e96409.	2.5	22
29	Engineered Lactobacillus rhamnosus GG expressing IgG-binding domains of protein G: Capture of hyperimmune bovine colostrum antibodies and protection against diarrhea in a mouse pup rotavirus infection model. Vaccine, 2014, 32, 470-477.	3.8	20
30	Identification and characterisation of vaginal lactobacilli from South African women. BMC Infectious Diseases, 2013, 13, 43.	2.9	68
31	Rice-based oral antibody fragment prophylaxis and therapy against rotavirus infection. Journal of Clinical Investigation, 2013, 123, 3829-3838.	8.2	73
32	Lactobacilli producing bispecific llama-derived anti-rotavirus proteins <i>in vivo</i> for rotavirus-induced diarrhea. Future Microbiology, 2011, 6, 583-593.	2.0	39
33	Safety and persistence of orally administered human Lactobacillus sp. strains in healthy adults. Beneficial Microbes, 2011, 2, 79-90.	2.4	20
34	In situgastrointestinal protection against anthrax edema toxin by single-chain antibody fragment producing lactobacilli. BMC Biotechnology, 2011, 11, 126.	3.3	23
35	Extended antimicrobial treatment of bacterial vaginosis combined with human lactobacilli to find the best treatment and minimize the risk of relapses. BMC Infectious Diseases, 2011, 11, 223.	2.9	50
36	Integrative Expression System for Delivery of Antibody Fragments by Lactobacilli. Applied and Environmental Microbiology, 2011, 77, 2174-2179.	3.1	45

HAROLD MARCOTTE

#	Article	IF	CITATIONS
37	Screening and Evaluation of Human Intestinal Lactobacilli for the Development of Novel Gastrointestinal Probiotics. Current Microbiology, 2010, 61, 560-566.	2.2	44
38	Characterization of oral lactobacilli as potential probiotics for oral health. Oral Microbiology and Immunology, 2008, 23, 139-147.	2.8	123
39	Engineered lactobody-producing lactobacilli: a novel form of therapy against rotavirus infection. Future Virology, 2008, 3, 327-341.	1.8	3
40	Lactobacillli expressing llama VHH fragments neutralise Lactococcusphages. BMC Biotechnology, 2007, 7, 58.	3.3	25
41	Effective prophylaxis against rotavirus diarrhea using a combination of Lactobacillus rhamnosus GG and antibodies. BMC Microbiology, 2007, 7, 86.	3.3	71
42	Expression of single-chain antibody against RgpA protease of Porphyromonas gingivalis in Lactobacillus. Journal of Applied Microbiology, 2006, 100, 256-263.	3.1	39
43	Therapeutic effect of llama derived VHH fragments against Streptococcus mutans on the development of dental caries. Applied Microbiology and Biotechnology, 2006, 72, 732-737.	3.6	30
44	Lactobacilli Expressing Variable Domain of Llama Heavyâ€Chain Antibody Fragments (Lactobodies) Confer Protection against Rotavirusâ€Induced Diarrhea. Journal of Infectious Diseases, 2006, 194, 1580-1588.	4.0	130
45	Passive Immunization by Lactobacilli Expressing Single-Chain Antibodies Against <i>Streptococcus mutans</i> . Molecular Biotechnology, 2005, 31, 221-232.	2.4	25
46	Oral lactobacilli in chronic periodontitis and periodontal health: species composition and antimicrobial activity. Oral Microbiology and Immunology, 2005, 20, 354-361.	2.8	236
47	Mucosal and Cellular Immune Responses Elicited by Recombinant <i>Lactococcus lactis</i> Strains Expressing Tetanus Toxin Fragment C. Infection and Immunity, 2004, 72, 2753-2761.	2.2	92
48	The aggregation-promoting factor of Lactobacillus crispatus M247 and its genetic locus. Journal of Applied Microbiology, 2004, 97, 749-756.	3.1	30
49	In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nature Biotechnology, 2002, 20, 702-706.	17.5	166
50	Immunoglobulin-binding domains of peptostreptococcal protein L enhance vaginal colonization of mice by Streptococcus gordonii. Microbial Pathogenesis, 2001, 30, 229-235.	2.9	21
51	Immunization with recombinant Streptococcus gordonii expressing tetanus toxin fragment C confers protection from lethal challenge in mice. Vaccine, 2001, 19, 1931-1939.	3.8	72
52	Oral Microbial Ecology and the Role of Salivary Immunoglobulin A. Microbiology and Molecular Biology Reviews, 1998, 62, 71-109.	6.6	388
53	Comparison of the indigenous oral microbiota and immunoglobulin responses of athymic (nu/nu) and euthymic (nu/+) mice. Oral Microbiology and Immunology, 1997, 12, 141-147.	2.8	7
54	Pneumocystis carinii Infection in Transgenic B Cell-Deficient Mice. Journal of Infectious Diseases, 1996, 173, 1034-1037.	4.0	104

#	Article	IF	CITATIONS
55	Colonization of the oral cavity of mice by an unidentified streptococcus. Oral Microbiology and Immunology, 1995, 10, 168-174.	2.8	8
56	Distribution of the Resident Oral Bacterial Populations in Different Strains of Mice. Microbial Ecology in Health and Disease, 1993, 6, 245-251.	3.5	7
57	Evaluation of Mouse Salivary IgA Directed Against Indigenous Oral Bacteria. Journal of Immunoassay, 1993, 14, 63-81.	0.3	10