
## Maria Tagliamonte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5825852/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Antigen-specific vaccines for cancer treatment. Human Vaccines and Immunotherapeutics, 2014, 10, 3332-3346.                                                                                                                                                           | 1.4 | 124       |
| 2  | Baculovirus-Derived Human Immunodeficiency Virus Type 1 Virus-Like Particles Activate Dendritic Cells<br>and Induce Ex Vivo T-Cell Responses. Journal of Virology, 2006, 80, 9134-9143.                                                                               | 1.5 | 111       |
| 3  | Challenges in cancer vaccine development for hepatocellular carcinoma. Journal of Hepatology, 2013,<br>59, 897-903.                                                                                                                                                   | 1.8 | 87        |
| 4  | Developments in virus-like particle-based vaccines for infectious diseases and cancer. Expert Review of Vaccines, 2011, 10, 1569-1583.                                                                                                                                | 2.0 | 82        |
| 5  | Dual CCR5/CCR2 targeting: opportunities for the cure of complex disorders. Cellular and Molecular Life Sciences, 2019, 76, 4869-4886.                                                                                                                                 | 2.4 | 81        |
| 6  | Induction of Systemic and Mucosal Cross-Clade Neutralizing Antibodies in BALB/c Mice Immunized<br>with Human Immunodeficiency Virus Type 1 Clade A Virus-Like Particles Administered by Different<br>Routes of Inoculation. Journal of Virology, 2005, 79, 7059-7067. | 1.5 | 73        |
| 7  | Effects of adjuvants on IgG subclasses elicited by virus-like Particles. Journal of Translational<br>Medicine, 2012, 10, 4.                                                                                                                                           | 1.8 | 66        |
| 8  | Immunotherapy in hepatocellular carcinoma. Annals of Hepatology, 2019, 18, 291-297.                                                                                                                                                                                   | 0.6 | 66        |
| 9  | SARS-CoV-2 RNA polymerase as target for antiviral therapy. Journal of Translational Medicine, 2020, 18, 185.                                                                                                                                                          | 1.8 | 64        |
| 10 | Selecting Target Antigens for Cancer Vaccine Development. Vaccines, 2020, 8, 615.                                                                                                                                                                                     | 2.1 | 59        |
| 11 | Combinatorial immunotherapy strategies for hepatocellular carcinoma. Current Opinion in Immunology, 2016, 39, 103-113.                                                                                                                                                | 2.4 | 52        |
| 12 | Nanoparticles to Improve the Efficacy of Peptide-Based Cancer Vaccines. Cancers, 2020, 12, 1049.                                                                                                                                                                      | 1.7 | 51        |
| 13 | Immature monocyte derived dendritic cells gene expression profile in response to Virus-Like Particles stimulation. Journal of Translational Medicine, 2005, 3, 45.                                                                                                    | 1.8 | 41        |
| 14 | Tackling hepatocellular carcinoma with individual or combinatorial immunotherapy approaches.<br>Cancer Letters, 2020, 473, 25-32.                                                                                                                                     | 3.2 | 40        |
| 15 | Exploiting Preexisting Immunity to Enhance Oncolytic Cancer Immunotherapy. Cancer Research, 2020,<br>80, 2575-2585.                                                                                                                                                   | 0.4 | 39        |
| 16 | Generation of HIV-1 Virus-Like Particles expressing different HIV-1 glycoproteins. Vaccine, 2011, 29,<br>4903-4912.                                                                                                                                                   | 1.7 | 38        |
| 17 | High Somatic Mutation and Neoantigen Burden Do Not Correlate with Decreased Progression-Free Survival in HCC Patients not Undergoing Immunotherapy. Cancers, 2019, 11, 1824.                                                                                          | 1.7 | 36        |
| 18 | Virus-like Particles as Preventive and Therapeutic Cancer Vaccines. Vaccines, 2022, 10, 227.                                                                                                                                                                          | 2.1 | 36        |

MARIA TAGLIAMONTE

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Novel metronomic chemotherapy and cancer vaccine combinatorial strategy for hepatocellular carcinoma in a mouse model. Cancer Immunology, Immunotherapy, 2015, 64, 1305-1314.                     | 2.0 | 31        |
| 20 | Phase I/II Multicenter Trial of a Novel Therapeutic Cancer Vaccine, HepaVac-101, for Hepatocellular<br>Carcinoma. Clinical Cancer Research, 2022, 28, 2555-2566.                                  | 3.2 | 31        |
| 21 | Potentiating cancer vaccine efficacy in liver cancer. Oncolmmunology, 2018, 7, e1488564.                                                                                                          | 2.1 | 26        |
| 22 | Screening of HIV-1 Isolates by Reverse Heteroduplex Mobility Assay and Identification of Non-B<br>Subtypes in Italy. Journal of Acquired Immune Deficiency Syndromes (1999), 2004, 37, 1295-1306. | 0.9 | 24        |
| 23 | Molecular and phylogenetic analysis of HIV-1 variants circulating among injecting drug users in<br>Mashhad-Iran. Infectious Agents and Cancer, 2006, 1, 4.                                        | 1.2 | 24        |
| 24 | Functional characterization of biodegradable nanoparticles as antigen delivery system. Journal of Experimental and Clinical Cancer Research, 2015, 34, 114.                                       | 3.5 | 24        |
| 25 | Unique true predicted neoantigens (TPNAs) correlates with anti-tumor immune control in HCC patients. Journal of Translational Medicine, 2018, 16, 286.                                            | 1.8 | 24        |
| 26 | HIV-Gag VLPs presenting trimeric HIV-1 gp140 spikes constitutively expressed in stable double transfected insect cell line. Vaccine, 2011, 29, 4913-4922.                                         | 1.7 | 23        |
| 27 | Immunological effects of a novel RNA-based adjuvant in liver cancer patients. Cancer Immunology,<br>Immunotherapy, 2017, 66, 103-112.                                                             | 2.0 | 23        |
| 28 | Identification and Validation of HCC-specific Gene Transcriptional Signature for Tumor Antigen Discovery. Scientific Reports, 2016, 6, 29258.                                                     | 1.6 | 22        |
| 29 | Cellular prognostic markers in hepatocellular carcinoma. Future Oncology, 2015, 11, 1591-1598.                                                                                                    | 1.1 | 20        |
| 30 | Identification and validation of viral antigens sharing sequence and structural homology with tumor-associated antigens (TAAs) , 2021, 9, e002694.                                                |     | 19        |
| 31 | Inhibition of tumor growth by cancer vaccine combined with metronomic chemotherapy and anti-PD-1 in a pre-clinical setting. Oncotarget, 2018, 9, 3576-3589.                                       | 0.8 | 19        |
| 32 | HIV Type 1 Subtype A Epidemic in Injecting Drug User (IDU) Communities in Iran. AIDS Research and<br>Human Retroviruses, 2007, 23, 1569-1574.                                                     | 0.5 | 18        |
| 33 | Constitutive expression of HIV-VLPs in stably transfected insect cell line for efficient delivery system.<br>Vaccine, 2010, 28, 6417-6424.                                                        | 1.7 | 18        |
| 34 | A novel multi-drug metronomic chemotherapy significantly delays tumor growth in mice. Journal of<br>Translational Medicine, 2016, 14, 58.                                                         | 1.8 | 18        |
| 35 | Cellular prognostic markers in hepatitis-related hepatocellular carcinoma. Infectious Agents and Cancer, 2018, 13, 10.                                                                            | 1.2 | 18        |
| 36 | Human papillomavirus infection in urine samples from male renal transplant patients. Journal of<br>Medical Virology, 2010, 82, 1179-1185.                                                         | 2.5 | 17        |

MARIA TAGLIAMONTE

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Immunogenicity of HIV Virus-Like Particles in Rhesus Macaques by Intranasal Administration. Vaccine<br>Journal, 2012, 19, 970-973.                                                                                                       | 3.2 | 17        |
| 38 | Human Endogenous Retrovirus Reactivation: Implications for Cancer Immunotherapy. Cancers, 2021, 13, 1999.                                                                                                                                | 1.7 | 16        |
| 39 | Neoantigens as potential vaccines in hepatocellular carcinoma. , 2022, 10, e003978.                                                                                                                                                      |     | 16        |
| 40 | Formation of self-assembled triple-layered rotavirus-like particles (tlRLPs) by constitutive<br>co-expression of VP2, VP6, and VP7 in stably transfected high-five insect cell lines. Journal of Medical<br>Virology, 2015, 87, 102-111. | 2.5 | 15        |
| 41 | HLA Does Not Impact on Short-Medium-Term Antibody Response to Preventive Anti-SARS-Cov-2 Vaccine.<br>Frontiers in Immunology, 2021, 12, 734689.                                                                                          | 2.2 | 15        |
| 42 | Developments in virus-like particle-based vaccines for HIV. Expert Review of Vaccines, 2013, 12, 119-127.                                                                                                                                | 2.0 | 14        |
| 43 | Genetic and phylogenetic evolution of HIV-1 in a low subtype heterogeneity epidemic: the Italian example. Retrovirology, 2007, 4, 34.                                                                                                    | 0.9 | 10        |
| 44 | Systems Biology Approach for Cancer Vaccine Development and Evaluation. Vaccines, 2015, 3, 544-555.                                                                                                                                      | 2.1 | 10        |
| 45 | Immunological effects of adjuvants in subsets of antigen presenting cells of cancer patients undergoing chemotherapy. Journal of Translational Medicine, 2020, 18, 34.                                                                   | 1.8 | 10        |
| 46 | Genetic and Phylogenetic Characterization of Structural Genes from Non-B HIV-1 Subtypes in Italy.<br>AIDS Research and Human Retroviruses, 2006, 22, 1045-1051.                                                                          | 0.5 | 9         |
| 47 | Molecular and phylogenetic analysis of HIV-1 variants circulating in Italy. Infectious Agents and Cancer, 2008, 3, 13.                                                                                                                   | 1.2 | 9         |
| 48 | Characterization of humoral responses to soluble trimeric HIV gp140 from a clade A Ugandan field<br>isolate. Journal of Translational Medicine, 2013, 11, 165.                                                                           | 1.8 | 9         |
| 49 | Molecular characterization analysis of the outer protein layer (VP7) from human rotavirus A<br>genotype G1 isolate identified in Iran: implications for vaccine development. New Microbiologica, 2012,<br>35, 415-27.                    | 0.1 | 9         |
| 50 | Development of a stable insect cell line constitutively expressing rotavirus VP2. Virus Research, 2013,<br>172, 66-74.                                                                                                                   | 1.1 | 8         |
| 51 | Prediction of individual immune responsiveness to a candidate vaccine by a systems vaccinology approach. Journal of Translational Medicine, 2014, 12, 11.                                                                                | 1.8 | 8         |
| 52 | Identification and characterization of heteroclitic peptides in TCR-binding positions with improved HLA-binding efficacy. Journal of Translational Medicine, 2021, 19, 89.                                                               | 1.8 | 8         |
| 53 | Novel Molecular Targets for Hepatocellular Carcinoma. Cancers, 2022, 14, 140.                                                                                                                                                            | 1.7 | 8         |
| 54 | Conformational HIV-1 Envelope on particulate structures: a tool for chemokine coreceptor binding studies. Journal of Translational Medicine, 2010, 9, S1.                                                                                | 1.8 | 7         |

MARIA TAGLIAMONTE

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Cell Surface Proteins in Hepatocellular Carcinoma: From Bench to Bedside. Vaccines, 2020, 8, 41.                                                                                                                            | 2.1 | 7         |
| 56 | HIV p24 as Scaffold for Presenting Conformational HIV Env Antigens. PLoS ONE, 2012, 7, e43318.                                                                                                                              | 1.1 | 6         |
| 57 | MHC-Optimized Peptide Scaffold for Improved Antigen Presentation and Anti-Tumor Response.<br>Frontiers in Immunology, 2021, 12, 769799.                                                                                     | 2.2 | 6         |
| 58 | Evolution of the HIV-1 V3 region in the Italian epidemic. New Microbiologica, 2007, 30, 1-11.                                                                                                                               | 0.1 | 6         |
| 59 | Evaluation of a modified version of Heteroduplex Mobility Assay for rapid screening of HIV-1 isolates<br>in epidemics characterized by mono/dual clade predominance. Journal of Virological Methods, 2005,<br>124, 123-134. | 1.0 | 5         |
| 60 | Abstract LB-094: Hepavac-101 first-in-man clinical trial of a multi-peptide-based vaccine for hepatocellular carcinoma. Cancer Research, 2020, 80, LB-094-LB-094.                                                           | 0.4 | 5         |
| 61 | Can HIV p24 Be a Suitable Scaffold for Presenting Env Antigens?. Vaccine Journal, 2011, 18, 2003-2004.                                                                                                                      | 3.2 | 4         |
| 62 | Virus-Like Particles. , 2017, , 205-219.                                                                                                                                                                                    |     | 4         |
| 63 | Long-term memory T cells as preventive anticancer immunity elicited by TuA-derived heteroclitic peptides. Journal of Translational Medicine, 2021, 19, 526.                                                                 | 1.8 | 3         |
| 64 | Systems vaccinology for cancer vaccine development. Expert Review of Vaccines, 2014, 13, 711-719.                                                                                                                           | 2.0 | 2         |
| 65 | Chemokine Receptor Interactions with Virus-Like Particles. Methods in Molecular Biology, 2013, 1013, 57-66.                                                                                                                 | 0.4 | 2         |
| 66 | Vaccine Approaches in Hepatocellular Carcinoma. , 2017, , 1-17.                                                                                                                                                             |     | 1         |
| 67 | Abstract A044: Immunological effects of a novel RNA-based adjuvant in liver cancer patients. , 2016, , .                                                                                                                    |     | 1         |
| 68 | P12-03. Generation of novel recombinant HIV-1 glycoproteins for expression on virus like particles.<br>Retrovirology, 2009, 6, .                                                                                            | 0.9 | 0         |
| 69 | P19-11. Generation of virus-like particles expressing different HIV-1 glycoproteins for induction of broadly neutralizing antibodies. Retrovirology, 2009, 6, .                                                             | 0.9 | 0         |
| 70 | Corrigendum to: "Challenges in cancer vaccine development for hepatocellular carcinoma―[J Hepatol<br>2013;59:897–903]. Journal of Hepatology, 2014, 60, 237.                                                                | 1.8 | 0         |
| 71 | High somatic mutation and neoantigen burden do not correlate with decreased progression-free survival in HCC patients. Journal of Hepatology, 2020, 73, S566.                                                               | 1.8 | 0         |
| 72 | Abstract B130: Evaluation of novel metronomic chemotherapy and cancer vaccine combinatorial strategy. , 2016, , .                                                                                                           |     | 0         |

5

| #  | Article                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Abstract 742: A novel multidrug metronomic chemotherapy significantly delays tumor growth in mice. , 2016, , .                                  |     | Ο         |
| 74 | Abstract A045: Inhibition of tumor growth by combination of metronomic chemotherapy and checkpoint inhibitor with a cancer vaccine. , 2016, , . |     | 0         |
| 75 | Abstract A046: Identification and validation of HCC-specific gene transcriptional signature for tumor antigen discovery. , 2016, , .            |     | 0         |
| 76 | Abstract 1198: Neoantigen load, tumor immune infiltration and prediction of survival in HCC patients. , 2019, , .                               |     | 0         |
| 77 | Identification of neoantigens as potential vaccines in hepatocellular carcinoma. Journal of<br>Hepatology, 2020, 73, S634-S635.                 | 1.8 | 0         |
| 78 | Combinatorial immunotherapy strategies for cancer vaccines. , 2022, , 137-154.                                                                  |     | 0         |
| 79 | Abstract 1198: Neoantigen load, tumor immune infiltration and prediction of survival in HCC patients. , 2019, , .                               |     | 0         |