
Monica Deiana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5825226/publications.pdf Version: 2024-02-01

Μονίςα Ογιανία

#	Article	IF	CITATIONS
1	Alcohol Consumption Is a Modifiable Risk Factor for Breast Cancer: Are Women Aware of This Relationship?. Alcohol and Alcoholism, 2022, 57, 533-539.	0.9	8
2	Vitamin C Cytotoxicity and Its Effects in Redox Homeostasis and Energetic Metabolism in Papillary Thyroid Carcinoma Cell Lines. Antioxidants, 2021, 10, 809.	2.2	12
3	Ferulic Acid Derivatives and Avenanthramides Modulate Endothelial Function through Maintenance of Nitric Oxide Balance in HUVEC Cells. Nutrients, 2021, 13, 2026.	1.7	11
4	Contribution of Biotransformations Carried Out by the Microbiota, Drug-Metabolizing Enzymes, and Transport Proteins to the Biological Activities of Phytochemicals Found in the Diet. Advances in Nutrition, 2021, 12, 2172-2189.	2.9	12
5	Ferulic Acid Metabolites Attenuate LPS-Induced Inflammatory Response in Enterocyte-like Cells. Nutrients, 2021, 13, 3152.	1.7	12
6	Conjugated Metabolites of Hydroxytyrosol and Tyrosol Contribute to the Maintenance of Nitric Oxide Balance in Human Aortic Endothelial Cells at Physiologically Relevant Concentrations. Molecules, 2021, 26, 7480.	1.7	9
7	Antioxidant, Antimicrobial, and Other Biological Properties of Pompia Juice. Molecules, 2020, 25, 3186.	1.7	26
8	Altered paracellular permeability in intestinal cell monolayer challenged with lipopolysaccharide: Modulatory effects of pterostilbene metabolites. Food and Chemical Toxicology, 2020, 145, 111729.	1.8	22
9	Modulatory Effect of Nicotinic Acid on the Metabolism of Caco-2 Cells Exposed to IL-1 $\hat{1}^2$ and LPS. Metabolites, 2020, 10, 204.	1.3	13
10	Extra Virgin Olive Oil Polyphenols: Modulation of Cellular Pathways Related to Oxidant Species and Inflammation in Aging. Cells, 2020, 9, 478.	1.8	68
11	Human Herpesvirus 8 infection may contribute to oxidative stress in diabetes type 2 patients. BMC Research Notes, 2020, 13, 75.	0.6	10
12	Modulation of LPS-induced nitric oxide production in intestinal cells by hydroxytyrosol and tyrosol metabolites: Insight into the mechanism of action. Food and Chemical Toxicology, 2019, 125, 520-527.	1.8	32
13	Crosstalk between Metabolic Alterations and Altered Redox Balance in PTC-Derived Cell Lines. Metabolites, 2019, 9, 23.	1.3	7
14	<i>In vivo</i> formed metabolites of polyphenols and their biological efficacy. Food and Function, 2019, 10, 6999-7021.	2.1	61
15	First characterization of Pompia intrea candied fruit: The headspace chemical profile, polar extract composition and its biological activities. Food Research International, 2019, 120, 620-630.	2.9	14
16	Biological Relevance of Extra Virgin Olive Oil Polyphenols Metabolites. Antioxidants, 2018, 7, 170.	2.2	112
17	Olive oil polyphenols reduce oxysterols -induced redox imbalance and pro-inflammatory response in intestinal cells. Redox Biology, 2018, 17, 348-354.	3.9	83
18	Modulation of intestinal epithelium homeostasis by extra virgin olive oil phenolic compounds. Food and Function, 2018, 9, 4085-4099.	2.1	55

Monica Deiana

#	Article	IF	CITATIONS
19	Antioxidant Effect of Natural Table Olives Phenolic Extract Against Oxidative Stress and Membrane Damage in Enterocyte‣ike Cells. Journal of Food Science, 2017, 82, 380-385.	1.5	34
20	Olive Oil Phenolics Prevent Oxysterolâ€Induced Proinflammatory Cytokine Secretion and Reactive Oxygen Species Production in Human Peripheral Blood Mononuclear Cells, Through Modulation of p38 and JNK Pathways. Molecular Nutrition and Food Research, 2017, 61, 1700283.	1.5	27
21	Derangement of intestinal epithelial cell monolayer by dietary cholesterol oxidation products. Free Radical Biology and Medicine, 2017, 113, 539-550.	1.3	26
22	Extra virgin olive oil phenolic extracts counteract the pro-oxidant effect of dietary oxidized lipids in human intestinal cells. Food and Chemical Toxicology, 2016, 90, 171-180.	1.8	52
23	Hydroxytyrosol and tyrosol sulfate metabolites protect against the oxidized cholesterol pro-oxidant effect in Caco-2 human enterocyte-like cells. Food and Function, 2016, 7, 337-346.	2.1	55
24	The role of p38 MAPK in the induction of intestinal inflammation by dietary oxysterols: modulation by wine phenolics. Food and Function, 2015, 6, 1218-1228.	2.1	43
25	Preliminary Evaluation of Probiotic Properties of <i>Lactobacillus</i> Strains Isolated from Sardinian Dairy Products. BioMed Research International, 2014, 2014, 1-9.	0.9	96
26	Wine consumption and intestinal redox homeostasis. Redox Biology, 2014, 2, 795-802.	3.9	68
27	Phenolic compounds present in Sardinian wine extracts protect against the production of inflammatory cytokines induced by oxysterols in CaCo-2 human enterocyte-like cells. Biochemical Pharmacology, 2013, 86, 138-145.	2.0	37
28	Effect of Storage Conditions on Lipid Components and Color ofâ€, <i>Mugil cephalus</i> â€,Processed Roes. Journal of Food Science, 2012, 77, C107-14.	1.5	21
29	Wine extracts from Sardinian grape varieties attenuate membrane oxidative damage in Caco-2 cell monolayers. Food Chemistry, 2012, 134, 2105-2113.	4.2	25
30	Effect of Aqueous and Lipophilic Mullet (Mugil cephalus) Bottarga Extracts on the Growth and Lipid Profile of Intestinal Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2011, 59, 1658-1666.	2.4	23
31	Hydroxytyrosol glucuronides protect renal tubular epithelial cells against H2O2 induced oxidative damage. Chemico-Biological Interactions, 2011, 193, 232-239.	1.7	26
32	Involvement of ERK, Akt and JNK signalling in H ₂ O ₂ â€induced cell injury and protection by hydroxytyrosol and its metabolite homovanillic alcohol. Molecular Nutrition and Food Research, 2010, 54, 788-796.	1.5	42
33	Protective effect of simple phenols from extravirgin olive oil against lipid peroxidation in intestinal Caco-2 cells. Food and Chemical Toxicology, 2010, 48, 3008-3016.	1.8	58
34	Protective effect and relation structure-activity of nonivamide and iododerivatives in several models of lipid oxidation. Chemico-Biological Interactions, 2009, 180, 183-192.	1.7	13
35	Hydroxytyrosol inhibits the proliferation of human colon adenocarcinoma cells through inhibition of ERK1/2 and cyclin D1. Molecular Nutrition and Food Research, 2009, 53, 897-903.	1.5	113
36	Flavonoid characterization and antioxidant activity of hydroalcoholic extracts from Achillea ligustica All Journal of Pharmaceutical and Biomedical Analysis, 2009, 50, 440-448.	1.4	48

Monica Deiana

#	Article	IF	CITATIONS
37	Protective effect of hydroxytyrosol and its metabolite homovanillic alcohol on H2O2 induced lipid peroxidation in renal tubular epithelial cells. Food and Chemical Toxicology, 2008, 46, 2984-2990.	1.8	43
38	Inhibition of p38/CREB phosphorylation and COX-2 expression by olive oil polyphenols underlies their anti-proliferative effects. Biochemical and Biophysical Research Communications, 2007, 362, 606-611.	1.0	142
39	Protective effect of olive oil minor polar components against oxidative damage in rats treated with ferric-nitrilotriacetate. Food and Chemical Toxicology, 2007, 45, 2434-2440.	1.8	23
40	Evaluation of the antioxidant and cytotoxic activity of arzanol, a prenylated α-pyrone–phloroglucinol etherodimer from Helichrysum italicum subsp.microphyllum. Chemico-Biological Interactions, 2007, 165, 117-126.	1.7	76
41	The fate of olive oil polyphenols in the gastrointestinal tract: Implications of gastric and colonic microflora-dependent biotransformation. Free Radical Research, 2006, 40, 647-658.	1.5	187
42	Lipid peroxidation in plasma of rats treated with ferricâ€nitrilotriacetate, in relation to kidney and liver modifications. BioFactors, 2005, 23, 35-44.	2.6	6
43	Antioxidant properties of extracts and compounds fromPsoralea morisiana. European Journal of Lipid Science and Technology, 2005, 107, 521-529.	1.0	18
44	Protective effect of capsinoid on lipid peroxidation in rat tissues induced by Fe-NTA. Free Radical Research, 2005, 39, 1155-1162.	1.5	25
45	Cholesterol as target of Fe–NTA-induced lipid peroxidation in rat tissues. Toxicology Letters, 2005, 157, 1-8.	0.4	12
46	?-Ergothioneine modulates oxidative damage in the kidney and liver of rats in vivo: studies upon the profile of polyunsaturated fatty acids. Clinical Nutrition, 2004, 23, 183-193.	2.3	83
47	Antioxidant activity of supercritical extract ofMelissa offfinalissubsp.offfinalisandMelissa offfinalissubsp.inodora. Phytotherapy Research, 2004, 18, 789-792.	2.8	49
48	Novel Approach to Study Oxidative Stability of Extra Virgin Olive Oils: Importance of α-Tocopherol Concentration. Journal of Agricultural and Food Chemistry, 2002, 50, 4342-4346.	2.4	99
49	Antioxidant Activity of Capsinoids. Journal of Agricultural and Food Chemistry, 2002, 50, 7396-7401.	2.4	129
50	The effect of ferric-nitrilotriacetic acid on the profile of polyunsaturated fatty acids in the kidney and liver of rats. Toxicology Letters, 2001, 123, 125-133.	0.4	25
51	Antioxidant activity of extracts from plants growing in Sardinia. Phytotherapy Research, 2001, 15, 511-518.	2.8	39
52	Inhibition of peroxynitrite dependent DNA base modification and tyrosine nitration by the extra virgin olive oil-derived antioxidant hydroxytyrosol. Free Radical Biology and Medicine, 1999, 26, 762-769.	1.3	148
53	Effect of Hydroxytyrosol Found in Extra Virgin Olive Oil on Oxidative DNA Damage and on Low-Density Lipoprotein Oxidation. Journal of Agricultural and Food Chemistry, 1998, 46, 5181-5187.	2.4	125
54	Characterization of conjugated diene fatty acids in milk, dairy products, and lamb tissues. Journal of Nutritional Biochemistry, 1996, 7, 150-155.	1.9	175

#	Article	IF	CITATIONS
55	A Novel Approach to Study Linoleic Acid Autoxidation: Importance of Simultaneous Detection of the Substrate and its Derivative Oxidation Products. Free Radical Research, 1996, 25, 43-53.	1.5	38