Rui Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/582513/publications.pdf

Version: 2024-02-01

24 479 11 22
papers citations h-index g-index

24 24 24 782 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	One-step surface modification strategy with composition-tunable microgels: From bactericidal surface to cell-friendly surface. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112372.	5.0	5
2	A Semisolid Micromechanical Beam Steering System Based on Micrometa-Lens Arrays. Nano Letters, 2022, 22, 1595-1603.	9.1	15
3	Analogue Optical Spatiotemporal Differentiator. Advanced Optical Materials, 2021, 9, 2002088.	7.3	19
4	Feasible Fabrication of Hollow Micro-vesicles by Non-amphiphilic Macromolecules Based on Interfacial Cononsolvency. Chinese Journal of Polymer Science (English Edition), 2021, 39, 856-864.	3.8	1
5	Microwave Metamaterial Absorbers with Controllable Luminescence Features. ACS Applied Materials & 2021, 13, 54497-54502.	8.0	13
6	Analog Optical Spatial Differentiators Based on Dielectric Metasurfaces. Advanced Optical Materials, 2020, 8, 1901523.	7.3	59
7	Universal Antifogging and Antimicrobial Thin Coating Based on Dopamine-Containing Glycopolymers. ACS Applied Materials & Early Interfaces, 2020, 12, 27632-27639.	8.0	34
8	Multifunctional Metasurface: Coplanar Embedded Design for Metalens and Nanoprinted Display. ACS Photonics, 2020, 7, 1171-1177.	6.6	25
9	Precise regulation of particle size of poly(N-isopropylacrylamide) microgels: Measuring chain dimensions with a "molecular ruler― Journal of Colloid and Interface Science, 2020, 566, 394-400.	9.4	3
10	Universal Antibacterial Surfaces Fabricated from Quaternary Ammonium Salt-Based PNIPAM Microgels. ACS Applied Materials & Diterfaces, 2020, 12, 19268-19276.	8.0	48
11	Ultrathin Electromagnetic–Acoustic Amphibious Stealth Coats. Advanced Optical Materials, 2020, 8, 2000200.	7.3	21
12	Antibacterial coatings based on microgels containing quaternary ammonium ions: Modification with polymeric sugars for improved cytocompatibility. Colloids and Interface Science Communications, 2020, 37, 100268.	4.1	19
13	A Switchable Metasurface Between Meta-Lens and Absorber. IEEE Photonics Technology Letters, 2019, 31, 1187-1190.	2.5	20
14	Ultralow Self-Cross-Linked Poly(<i>N</i> -isopropylacrylamide) Microgels Prepared by Solvent Exchange. Langmuir, 2019, 35, 13991-13998.	3.5	6
15	Role transition of PNIPAM ionic microgels in dispersion polymerization by changing the monomer type. Polymer, 2019, 175, 171-176.	3.8	O
16	Stabilization capacity of PNIPAM microgels as particulate stabilizer in dispersion polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 789-794.	4.7	6
17	Malonitrileâ€Functionalized Tetraphenylpyrazine: Aggregationâ€Induced Emission, Ratiometric Detection of Hydrogen Sulfide, and Mechanochromism. Advanced Functional Materials, 2018, 28, 1704689.	14.9	124
18	Role Transformation of Poly(<i>N</i> -isopropylacrylamide) Microgels from Stabilizer to Seed in Dispersion Polymerization by Controlling the Water Content in Methanol–Water Mixture. Langmuir, 2018, 34, 3420-3425.	3 . 5	6

Rui Chen

#	Article	IF	CITATION
19	Preparation, characterization and mechanism study of small size core-shell polymer nanoparticles dissociated from poly(N-isopropylacrylamide) ionic microgels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 184-191.	4.7	2
20	An efficient method for CTCs screening with excellent operability by integrating Parsortixâ,,¢-like cell separation chip and selective size amplification. Biomedical Microdevices, 2018, 20, 51.	2.8	5
21	Morphology design and control of polymer particles by regulating the droplet flowing mode in microfluidic chips. Polymer Chemistry, 2017, 8, 2953-2958.	3.9	9
22	A red-emitting cationic hyperbranched polymer: facile synthesis, aggregation-enhanced emission, large Stokes shift, polarity-insensitive fluorescence and application in cell imaging. Polymer Chemistry, 2017, 8, 6277-6282.	3.9	26
23	Investigation of the Formation Process of PNIPAM-Based Ionic Microgels. ACS Omega, 2017, 2, 8788-8793.	3.5	6
24	Synthesis of an amphiphilic hyperbranched polymer as a novel pH-sensitive drug carrier. RSC Advances, 2015, 5, 20155-20159.	3.6	7