
Joan G Lynam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5824647/publications.pdf Version: 2024-02-01

IOAN CLYNAM

#	Article	IF	CITATIONS
1	Hydrothermal carbonization: Fate of inorganics. Biomass and Bioenergy, 2013, 49, 86-94.	2.9	381
2	Hydrothermal Carbonization of Biomass for Energy and Crop Production. Applied Bioenergy, 2014, 1, .	4.3	259
3	Deep eutectic solvents' ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresource Technology, 2017, 238, 684-689.	4.8	258
4	Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresource Technology, 2011, 102, 6192-6199.	4.8	208
5	Hydrothermal carbonization of loblolly pine: reaction chemistry and water balance. Biomass Conversion and Biorefinery, 2014, 4, 311-321.	2.9	183
6	Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresource Technology, 2013, 139, 161-169.	4.8	171
7	Pelletization of biochar from hydrothermally carbonized wood. Environmental Progress and Sustainable Energy, 2012, 31, 225-234.	1.3	143
8	Catalytic conversion of hemicellulosic biomass to lactic acid in pH neutral aqueous phase media. Applied Catalysis B: Environmental, 2015, 162, 149-157.	10.8	122
9	Engineered pellets from dry torrefied and HTC biochar blends. Biomass and Bioenergy, 2014, 63, 229-238.	2.9	121
10	Hydrothermal carbonization of various lignocellulosic biomass. Biomass Conversion and Biorefinery, 2015, 5, 173-181.	2.9	104
11	Effect of salt addition on hydrothermal carbonization of lignocellulosic biomass. Fuel, 2012, 99, 271-273.	3.4	85
12	Sustainable lignin to enhance asphalt binder oxidative aging properties and mix properties. Journal of Cleaner Production, 2019, 217, 456-468.	4.6	80
13	Pretreatment of rice hulls by ionic liquid dissolution. Bioresource Technology, 2012, 114, 629-636.	4.8	72
14	Theoretical and experimental study of choline chloride-carboxylic acid deep eutectic solvents and their hydrogen bonds. Journal of Molecular Structure, 2020, 1222, 128849.	1.8	69
15	Roughness and wettability of biofilm carriers: A systematic review. Environmental Technology and Innovation, 2021, 21, 101233.	3.0	61
16	Pretreatment of waste biomass in deep eutectic solvents: Conductive heating versus microwave heating. Industrial Crops and Products, 2019, 142, 111865.	2.5	55
17	Ionic liquid and water separation by membrane distillation. Chemical Engineering Journal, 2016, 288, 557-561.	6.6	48
18	Effects of water recycling in hydrothermal carbonization of loblolly pine. Environmental Progress and Sustainable Energy, 2014, 33, 1309-1315.	1.3	44

Joan G Lynam

#	Article	IF	CITATIONS
19	Embodied energy of rice husk ash for sustainable cement production. Case Studies in Chemical and Environmental Engineering, 2020, 2, 100004.	2.9	34
20	Sugarcane bagasse and rice husk ash pozzolans: Cement strength and corrosion effects when using saltwater. Current Research in Green and Sustainable Chemistry, 2020, 1-2, 7-13.	2.9	28
21	Glycerol as an ionic liquid co-solvent for pretreatment of rice hulls to enhance glucose and xylose yield. Bioresource Technology, 2014, 166, 471-478.	4.8	25
22	Hydrothermal Liquefaction of Loblolly Pine: Effects of Various Wastes on Produced Biocrude. ACS Omega, 2018, 3, 3051-3059.	1.6	24
23	Corn Stover Pretreatment by Ionic Liquid and Glycerol Mixtures with Their Density, Viscosity, and Thermogravimetric Properties. ACS Sustainable Chemistry and Engineering, 2016, 4, 3786-3793.	3.2	20
24	Hydrothermal Carbonization of Lignocellulosic Biomass. Green Chemistry and Sustainable Technology, 2014, , 275-311.	0.4	18
25	Lignin extraction from waste biomass with deep eutectic solvents: Molecular weight and heating value. Biocatalysis and Agricultural Biotechnology, 2021, 32, 101949.	1.5	18
26	Secondary Agriculture Residues Pretreatment Using Deep Eutectic Solvents. Waste and Biomass Valorization, 2021, 12, 2259-2269.	1.8	17
27	Use of Biomass Ash for Development of Engineered Cementitious Binders. ACS Sustainable Chemistry and Engineering, 2018, 6, 13122-13130.	3.2	14
28	Synergistic utilization of diverse industrial wastes for reutilization in steel production and their geopolymerization potential. Waste Management, 2021, 126, 728-736.	3.7	14
29	Hydrothermal carbonization of coffee silverskins. Biocatalysis and Agricultural Biotechnology, 2021, 36, 102145.	1.5	14
30	Loblolly pine pretreatment by ionic liquid-glycerol mixtures. Biomass Conversion and Biorefinery, 2016, 6, 247-260.	2.9	6
31	Pretreatment of Loblolly Pine Tree Needles Using Deep Eutectic Solvents. Biomass, 2021, 1, 1-10.	1.2	3
32	Deep eutectic solvent extracted lignin from waste biomass: Effects as a plasticizer in cement paste. Case Studies in Construction Materials, 2020, 13, e00460.	0.8	2
33	Oil spill cleanup using industrial and agricultural waste-based magnetic silica sorbent material: a green approach. Green Chemistry Letters and Reviews, 2021, 14, 634-641.	2.1	1
34	Ionic Liquids Separating Rubber Latex from Guayule. Materials, 2021, 14, 4255.	1.3	0