
Lei Qiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5824329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oroxylin A inhibits the migration of hepatocellular carcinoma cells by inducing NAG-1 expression. Acta Pharmacologica Sinica, 2022, 43, 724-734.	2.8	9
2	Anti-inflammatory steroids from the fruits of <i>Artocarpus heterophyllus</i> . Natural Product Research, 2021, 35, 3071-3077.	1.0	5
3	Keratinocyte autophagy enables the activation of keratinocytes and fibroblastsand facilitates wound healing. Autophagy, 2021, 17, 2128-2143.	4.3	99
4	Dual nicotinamide phosphoribosyltransferase and epidermal growth factor receptor inhibitors for the treatment of cancer. European Journal of Medicinal Chemistry, 2021, 211, 113022.	2.6	13
5	Carbazole alkaloids from the fruits of Clausena anisum-olens with potential PTP1B and α-glucosidase inhibitory activities. Bioorganic Chemistry, 2021, 110, 104775.	2.0	10
6	Clausanisumine, a Prenylated Bicarbazole Alkaloid from the Fruits of <i>Clausena anisum-olens</i> and Its Potential Anti-HIV Activity. Journal of Organic Chemistry, 2021, 86, 17722-17726.	1.7	7
7	Artapilosines A and B, Unusual Phenanthrene Derivatives Related to Aporphine Alkaloids from <i>Artabotrys pilosus</i> . Journal of Natural Products, 2021, 84, 3117-3121.	1.5	10
8	KALRN mutations promote antitumor immunity and immunotherapy response in cancer. , 2020, 8, e000293.		13
9	Oroxylin A reverses hypoxia-induced cisplatin resistance through inhibiting HIF-1α mediated XPC transcription. Oncogene, 2020, 39, 6893-6905.	2.6	30
10	Recent advances targeting C chemokine receptor type 2 for liver diseases in monocyte/macrophage. Liver International, 2020, 40, 2928-2936.	1.9	8
11	Limonoids from the Fresh Young Leaves and Buds of <i>Toona sinensis</i> and Their Potential Neuroprotective Effects. Journal of Agricultural and Food Chemistry, 2020, 68, 12326-12335.	2.4	16
12	Bioactive daphnane diterpenes from Wikstroemia chuii with their potential anti-inflammatory effects and anti-HIV activities. Bioorganic Chemistry, 2020, 105, 104388.	2.0	10
13	MTH1 inhibitor amplifies the lethality of reactive oxygen species to tumor in photodynamic therapy. Science Advances, 2020, 6, eaaz0575.	4.7	59
14	Prenylated Chromones from the Fruits of <i>Artocarpus heterophyllus</i> and Their Potential Anti-HIV-1 Activities. Journal of Agricultural and Food Chemistry, 2020, 68, 2024-2030.	2.4	31
15	Prenylated Coumarins from the Fruits of <i>Manilkara zapota</i> with Potential Anti-inflammatory Effects and Anti-HIV Activities. Journal of Agricultural and Food Chemistry, 2019, 67, 11942-11947.	2.4	32
16	Geranylated carbazole alkaloids with potential neuroprotective activities from the stems and leaves of Clausena lansium. Bioorganic Chemistry, 2019, 92, 103278.	2.0	10
17	Carbazole Alkaloids with Potential Neuroprotective Activities from the Fruits of <i>Clausena lansium</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 5764-5771.	2.4	41
18	Anti-Inflammatory and Antiproliferative Prenylated Isoflavone Derivatives from the Fruits of <i>Ficus carica</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 4817-4823.	2.4	52

Lei Qiang

#	Article	IF	CITATIONS
19	Phosphorylation of xeroderma pigmentosum group C regulates ultraviolet-induced DNA damage repair. Nucleic Acids Research, 2018, 46, 5050-5060.	6.5	17
20	Small molecule GL-V9 protects against colitis-associated colorectal cancer by limiting NLRP3 inflammasome through autophagy. Oncolmmunology, 2018, 7, e1375640.	2.1	50
21	NF-κB Signaling Activation Induced by Chloroquine Requires Autophagosome, p62 Protein, and c-Jun N-terminal Kinase (JNK) Signaling and Promotes Tumor Cell Resistance. Journal of Biological Chemistry, 2017, 292, 3379-3388.	1.6	54
22	Epidermal SIRT1 regulates inflammation, cell migration, and wound healing. Scientific Reports, 2017, 7, 14110.	1.6	53
23	Autophagy gene <i>ATG7</i> regulates ultraviolet radiation-induced inflammation and skin tumorigenesis. Autophagy, 2017, 13, 2086-2103.	4.3	82
24	Adaptor protein p62 promotes skin tumor growth and metastasis and is induced by UVA radiation. Journal of Biological Chemistry, 2017, 292, 14786-14795.	1.6	24
25	Distinct Role of Sesn2 in Response to UVBâ€Induced DNA Damage and UVAâ€Induced Oxidative Stress in Melanocytes. Photochemistry and Photobiology, 2017, 93, 375-381.	1.3	30
26	Regulation of XPC deubiquitination by USP11 in repair of UV-induced DNA damage. Oncotarget, 2017, 8, 96522-96535.	0.8	21
27	Arsenic Induces p62 Expression to Form a Positive Feedback Loop with Nrf2 in Human Epidermal Keratinocytes: Implications for Preventing Arsenic-Induced Skin Cancer. Molecules, 2017, 22, 194.	1.7	37
28	Mitochondrial dysfunction activates the AMPK signaling and autophagy to promote cell survival. Genes and Diseases, 2016, 3, 82-87.	1.5	51
29	Autophagy positively regulates DNA damage recognition by nucleotide excision repair. Autophagy, 2016, 12, 357-368.	4.3	75
30	Effect of Immunosuppressants Tacrolimus and Mycophenolate Mofetil on the Keratinocyte <scp>UVB</scp> Response. Photochemistry and Photobiology, 2015, 91, 242-247.	1.3	24
31	Loss of sirtuin 1 (SIRT1) disrupts skin barrier integrity and sensitizes mice to epicutaneous allergen challenge. Journal of Allergy and Clinical Immunology, 2015, 135, 936-945.e4.	1.5	42
32	Sestrin2 Protein Positively Regulates AKT Enzyme Signaling and Survival in Human Squamous Cell Carcinoma and Melanoma Cells. Journal of Biological Chemistry, 2014, 289, 35806-35814.	1.6	44
33	Mammalian <scp>SIRT</scp> 2 inhibits keratin 19 expression and is a tumor suppressor in skin. Experimental Dermatology, 2014, 23, 207-209.	1.4	41
34	Regulation of cell proliferation and migration by p62 through stabilization of Twist1. Proceedings of the United States of America, 2014, 111, 9241-9246.	3.3	201
35	Autophagy deficiency stabilizes TWIST1 to promote epithelial-mesenchymal transition. Autophagy, 2014, 10, 1864-1865.	4.3	63
36	Autophagy Controls p38 Activation to Promote Cell Survival under Genotoxic Stress. Journal of Biological Chemistry, 2013, 288, 1603-1611.	1.6	91

Lei Qiang

#	Article	IF	CITATIONS
37	Wogonin Induced Calreticulin/Annexin A1 Exposure Dictates the Immunogenicity of Cancer Cells in a PERK/AKT Dependent Manner. PLoS ONE, 2012, 7, e50811.	1.1	59
38	Oroxylin a reverses multiâ€drug resistance of human hepatoma BEL7402/5â€FU cells via downregulation of Pâ€glycoprotein expression by inhibiting NFâ€₽B signaling pathway. Molecular Carcinogenesis, 2012, 51, 185-195.	1.3	46
39	LFG-500, a newly synthesized flavonoid, induced a reactive oxygen species-mitochondria-mediated apoptosis in hepatocarcinoma cells. Biomedicine and Preventive Nutrition, 2011, 1, 132-138.	0.9	9
40	Reactive oxygen species–mitochondria pathway involved in FV-429-induced apoptosis in human hepatocellular carcinoma HepG2 cells. Anti-Cancer Drugs, 2011, 22, 886-895.	0.7	8
41	DHF-18, a new synthetic flavonoid, induced a mitochondrial-mediated apoptosis of hepatocarcinoma cells in vivo and in vitro. European Journal of Pharmacology, 2011, 651, 33-40.	1.7	7
42	Reactive oxygen species-mitochondria pathway involved in LYG-202-induced apoptosis in human hepatocellular carcinoma HepG2 cells. Cancer Letters, 2010, 296, 96-105.	3.2	38
43	Wogonin potentiates the antitumor effects of low dose 5-fluorouracil against gastric cancer through induction of apoptosis by down-regulation of NF-kappaB and regulation of its metabolism. Toxicology Letters, 2010, 197, 201-210.	0.4	58
44	Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Letters, 2009, 279, 13-21.	3.2	170
45	Inhibition of glioblastoma growth and angiogenesis by gambogic acid: An in vitro and in vivo study. Biochemical Pharmacology, 2008, 75, 1083-1092.	2.0	77