Andrey N Zagoruiko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/582429/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic device for environmentally friendly combustion of liquid fuels on the base of structured glass-fiber catalyst. Catalysis Today, 2022, 383, 259-265.	4.4	5
2	Unsteady-state operation of reactors with fixed catalyst beds. Reviews in Chemical Engineering, 2021, 37, 193-225.	4.4	6
3	Thermodynamically Consistent Kinetic Model for the Naphtha Reforming Process. Industrial & Engineering Chemistry Research, 2021, 60, 6627-6638.	3.7	4
4	Authors' response to Letter to Editor by Kovalyov et al. Chemical Engineering Journal, 2021, 420, 129957.	12.7	0
5	Decomposition of hydrogen sulfide into elements in the cyclic chemisorption-catalytic regime. Catalysis Today, 2021, 378, 176-188.	4.4	10
6	Effect of experimental data accuracy on stochastic reconstruction of complex hydrocarbon mixture. Catalysis Today, 2021, 378, 202-210.	4.4	6
7	Chemical engineering research in Russia: national trends within the global context. Reviews in Chemical Engineering, 2021, 37, 1-2.	4.4	1
8	Mathematical modeling of regeneration of coked Cr-Mg catalyst in fixed bed reactors. Chemical Engineering Journal, 2020, 380, 122374.	12.7	9
9	Mathematical Modeling and Experimental Studies of Microtubular Solid Oxide Fuel Cells. Theoretical Foundations of Chemical Engineering, 2020, 54, 647-654.	0.7	3
10	Structured catalytic cartridges for SO2 oxidation in flue gases of coal-fired powerplants. Chemical Engineering Journal, 2019, 378, 122194.	12.7	3
11	Catalytic device on the base of glass-fiber catalyst for environmentally safe combustion of fuels and utilization of toxic wastes. Chemical Engineering Journal, 2019, 373, 406-412.	12.7	7
12	Compact solid oxide fuel cells and catalytic reformers based on microtubular membranes. Catalysis Today, 2019, 329, 167-170.	4.4	5
13	Low-temperature chemisorption-enhanced catalytic decomposition of hydrogen sulfide: Thermodynamic analysis and process concept. Catalysis Today, 2019, 329, 171-176.	4.4	8
14	Kinetics of H2S selective oxidation by oxygen at the carbon nanofibrous catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2018, 123, 625-639.	1.7	5
15	On the intra-fiber mass transfer limitations in glass-fiber catalysts. Chemical Engineering Journal, 2018, 346, 34-37.	12.7	1
16	Wet peroxide oxidation of phenol over carbon/zeolite catalysts. Kinetics and diffusion study in batch and flow reactors. Journal of Environmental Chemical Engineering, 2018, 6, 2551-2560.	6.7	14
17	Adsorption-catalytic process for removal of volatile organic compounds from lean waste gases: Optimization of the adsorbent-catalyst bed geometry. Chemical Engineering and Processing: Process Intensification, 2018, 132, 1-10.	3.6	6
18	A microfiber catalyst with lemniscate structural elements. Catalysis in Industry, 2017, 9, 39-47.	0.7	2

ANDREY N ZAGORUIKO

#	Article	IF	CITATIONS
19	Glass fiber supports modified by layers of silica and carbon nanofibers. Catalysis for Sustainable Energy, 2017, 4, 1-6.	0.7	4
20	Modifications of the adsorption-catalytic system for organic impurities removal. Chemical Engineering and Processing: Process Intensification, 2017, 122, 538-549.	3.6	7
21	Novel structured catalytic systems—Cartridges on the base of fibrous catalysts. Chemical Engineering and Processing: Process Intensification, 2017, 122, 460-472.	3.6	17
22	On the performance stability of the MnOx/Al2O3 catalyst for VOC incineration under forced adsorption-catalytic cycling conditions. Journal of Environmental Chemical Engineering, 2017, 5, 5850-5856.	6.7	24
23	Copper-chromite glass fiber catalyst and its performance in the test reaction of deep oxidation of toluene in air. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 247-260.	1.7	15
24	Characterization of vanadia catalysts on structured micro-fibrous glass supports for selective oxidation of hydrogen sulfide. Catalysis for Sustainable Energy, 2016, 2, 87-95.	0.7	11
25	Iron oxide catalyst at the modified glass fiber support for selective oxidation of H2S. Catalysis Communications, 2016, 87, 36-40.	3.3	29
26	An improved adsorption–catalytic process for removing volatile organic compounds from exhaust gases. Catalysis in Industry, 2016, 8, 231-241.	0.7	7
27	Properties of platinum-containing glass-fiber catalysts in the SO2 oxidation reaction. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116, 147-158.	1.7	8
28	Structured woven glass-fiber IC-12-S111 catalyst for the deep oxidation of organic compounds. Catalysis in Industry, 2015, 7, 329-334.	0.7	15
29	Pressure drop and mass transfer in the structured cartridges with fiber-glass catalyst. Chemical Engineering Journal, 2015, 282, 58-65.	12.7	25
30	Wet peroxide oxidation of phenol over Cu-ZSM-5 catalyst in a flow reactor. Kinetics and diffusion study. Chemical Engineering Journal, 2015, 282, 108-115.	12.7	40
31	Vanadium oxide catalysts on structured microfiber supports for the selective oxidation of hydrogen sulfide. Catalysis in Industry, 2015, 7, 155-160.	0.7	12
32	Cu and Fe-containing ZSM-5 zeolites as catalysts for wet peroxide oxidation of organic contaminants: reaction kinetics. Research on Chemical Intermediates, 2015, 41, 9521-9537.	2.7	17
33	Unsteady-state kinetic simulation of naphtha reforming and coke combustion processes in the fixed and moving catalyst beds. Catalysis Today, 2014, 220-222, 168-177.	4.4	41
34	Pressure drop of structured cartridges with fiber–glass catalysts. Chemical Engineering Journal, 2014, 238, 31-36.	12.7	15
35	Reverse-flow reactor concept for combined SO2 and co-oxidation in smelter off-gases. Chemical Engineering Journal, 2014, 238, 86-92.	12.7	10
36	Modeling of a multidispersed adsorption-catalytic system for removal of organics from exhaust gas. Theoretical Foundations of Chemical Engineering, 2013, 47, 175-184.	0.7	4

ANDREY N ZAGORUIKO

#	Article	IF	CITATIONS
37	A study of the homogeneous oxidation of low-concentration methane-containing gases at high temperatures. Russian Journal of Applied Chemistry, 2012, 85, 1570-1576.	0.5	6
38	Modeling of the multidispersed adsorption–catalytic system for removing organic impurities from waste gases. Chemical Engineering Science, 2012, 76, 81-89.	3.8	12
39	The process for catalytic incineration of waste gas on IC-12-S102 platinum glass fiber catalyst. Catalysis in Industry, 2010, 2, 113-117.	0.7	15
40	Catalytic processes and catalysts for production of elemental sulfur from sulfur-containing gases. Catalysis in Industry, 2010, 2, 343-352.	0.7	23
41	Glass-fiber catalysts: Novel oxidation catalysts, catalytic technologies for environmental protection. Catalysis Today, 2010, 151, 195-199.	4.4	54
42	Technology of methane combustion on granulated catalysts for environmentally friendly gas turbine power plants. Catalysis Today, 2010, 155, 35-44.	4.4	8
43	Oxidative destruction of chlorinated hydrocarbons on Pt-containing fiber-glass catalysts. Chemosphere, 2010, 79, 199-204.	8.2	33
44	Novel Catalytic Process for Flue Gas Conditioning in Electrostatic Precipitators of Coal-Fired Power Plants. Journal of the Air and Waste Management Association, 2010, 60, 1002-1008.	1.9	9
45	Modeling of Reverse-Flow Reactor for VOC Incineration with Account of Reversible Adsorption: The Way to Minimize the Negative Influence of Desorption Phenomena. International Journal of Chemical Reactor Engineering, 2009, 6, .	1.1	1
46	Structured catalyst and combined reactor loading for methane combustion in a gas turbine power plant. Catalysis Today, 2009, 147, S237-S243.	4.4	7
47	Catalytic flue gas conditioning in electrostatic precipitators of coal-fired power plants. Chemical Engineering Journal, 2009, 154, 325-332.	12.7	22
48	Title is missing!. Chemical Engineering Journal, 2009, 154, 1.	12.7	2
49	Oxidation of organic compounds in a microstructured catalytic reactor. Chemical Engineering Journal, 2008, 135, S57-S65.	12.7	38
50	Anaerobic catalytic oxidation of hydrocarbons in moving heat waves. Case simulation: Propane oxidative dehydrogenation in a packed adiabatic V–Ti oxide catalyst bed. Chemical Engineering Science, 2008, 63, 4962-4968.	3.8	5
51	Development and testing of granular catalysts for combustors of regenerative gas turbine plants. Kinetics and Catalysis, 2008, 49, 873-885.	1.0	8
52	Unsteady catalytic processes and sorption-catalytic technologies. Russian Chemical Reviews, 2007, 76, 639-654.	6.5	16
53	Kinetic instabilities and intra-thread diffusion limitations in CO oxidation reaction at Pt/fiber-glass catalysts. Chemical Engineering Journal, 2007, 134, 111-116.	12.7	7
54	Homogeneous high-temperature oxidation of methane. Reaction Kinetics and Catalysis Letters, 2007, 91, 273-282.	0.6	16

#	Article	IF	CITATIONS
55	Sorption-enhanced steam reforming of hydrocarbons with autothermal sorbent regeneration in a moving heat wave of a catalytic combustion reaction. Reaction Kinetics and Catalysis Letters, 2007, 91, 315-324.	0.6	5
56	Simulation of selective reactions' performance in transient regimes with periodical separate feeding of reagents. Chemical Engineering Journal, 2007, 134, 117-122.	12.7	3
57	Performance of selective catalytic exothermic reactions in the ?reversed heat wave? mode: a way to improve selectivity. Chemical Engineering Journal, 2005, 107, 133-139.	12.7	4
58	Selective exothermic catalytic reactions in a reverse heat front. Theoretical Foundations of Chemical Engineering, 2005, 39, 70-77.	0.7	1
59	Mathematical modelling of Claus reactors undergoing sulfur condensation and evaporation. Chemical Engineering Journal, 2002, 87, 73-88.	12.7	37
60	Mathematical modeling of unsteady-state operation taking into account adsorption and chemisorption processes on the catalyst pellet. Chemical Engineering Science, 1999, 54, 4639-4643.	3.8	10
61	SO2 oxidation method. Mathematical modeling taking into account dynamic properties of the catalyst. Chemical Engineering Science, 1999, 54, 4475-4482.	3.8	9
62	Non-stationary kinetic model for deep oxidation of aromatic hydrocarbons on oxide catalysts. Reaction Kinetics and Catalysis Letters, 1999, 66, 63-70.	0.6	2
63	Development of the adsorption-catalytic reverse-process for incineration of volatile organic compounds in diluted waste gases. Chemical Engineering Science, 1996, 51, 2989-2994.	3.8	21
64	Application of the nonstationary state of a catalyst surface for gas purification from toxic impurities. Catalysis Today, 1996, 27, 315-319.	4.4	19
65	Reactor performance with periodic flow reversal for a multistep complex reaction. Chemical Engineering Science, 1992, 47, 4315-4321.	3.8	5
			_

66 Structured Glass-Fiber Catalysts. , 0, , .

3