Scott Moye-Rowley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5823747/publications.pdf

Version: 2024-02-01

85 5,052 41 papers citations h-index

70961 95083 68
h-index g-index

90 90 all docs citations

90 times ranked 4505 citing authors

#	Article	IF	Citations
1	The Response to Heat Shock and Oxidative Stress in <i>Saccharomyces cerevisiae</i> . Genetics, 2012, 190, 1157-1195.	1.2	552
2	A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature, 2008, 452, 604-609.	13.7	294
3	Transcriptional activation by the SV40 AP-1 recognition element in yeast is mediated by a factor similar to AP-1 that is distinct from GCN4. Cell, 1988, 53, 321-330.	13.5	251
4	Expression of a Glutamate Decarboxylase Homologue Is Required for Normal Oxidative Stress Tolerance in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2001, 276, 244-250.	1.6	190
5	Multiple Signals from Dysfunctional Mitochondria Activate the Pleiotropic Drug Resistance Pathway in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2000, 275, 37347-37356.	1.6	175
6	Multidrug Resistance in Fungi. Eukaryotic Cell, 2007, 6, 1933-1942.	3.4	153
7	Identification and Characterization of SNQ2, a New Multidrug ATP Binding Cassette Transporter of the Yeast Plasma Membrane. Journal of Biological Chemistry, 1995, 270, 18150-18157.	1.6	150
8	Yap1p Activates Gene Transcription in an Oxidant-Specific Fashion. Molecular and Cellular Biology, 1999, 19, 8302-8313.	1.1	139
9	Regulation of the Transcriptional Response to Oxidative Stress in Fungi: Similarities and Differences. Eukaryotic Cell, 2003, 2, 381-389.	3.4	137
10	Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Cap1p. Molecular Microbiology, 2002, 36, 618-629.	1.2	131
11	Multiple Pdr1p/Pdr3p Binding Sites Are Essential for Normal Expression of the ATP Binding Cassette Transporter Protein-encoding Gene. Journal of Biological Chemistry, 1996, 271, 23049-23054.	1.6	121
12	Multidrug resistance in fungi: regulation of transporter-encoding gene expression. Frontiers in Physiology, 2014, 5, 143.	1.3	112
13	A Novel Zn2-Cys6 Transcription Factor AtrR Plays a Key Role in an Azole Resistance Mechanism of Aspergillus fumigatus by Co-regulating cyp51A and cdr1B Expressions. PLoS Pathogens, 2017, 13, e1006096.	2.1	104
14	The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nature Communications, 2020, 11, 427.	5.8	100
15	The Saccharomyces cerevisiae AP-1 Protein Discriminates between Oxidative Stress Elicited by the Oxidants H2O2 and Diamide. Journal of Biological Chemistry, 1997, 272, 7908-7914.	1.6	97
16	New Insights into the Pleiotropic Drug Resistance Network from Genome-Wide Characterization of the YRR1 Transcription Factor Regulation System. Molecular and Cellular Biology, 2002, 22, 2642-2649.	1.1	95
17	Transcriptional Control of Multidrug Resistance in the Yeast Saccharomyces. Progress in Molecular Biology and Translational Science, 2003, 73, 251-279.	1.9	93
18	Mutational Disruption of Plasma Membrane Trafficking of <i>Saccharomyces cerevisiae</i> Yor1p, a Homologue of Mammalian Multidrug Resistance Protein. Molecular and Cellular Biology, 1999, 19, 2998-3009.	1.1	89

#	Article	IF	CITATIONS
19	Regulation of Transcription Factor Pdr1p Function by an Hsp70 Protein in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1998, 18, 1147-1155.	1.1	80
20	Genome-wide studies on the nuclear PDR3-controlled response to mitochondrial dysfunction in yeast. FEBS Letters, 2002, 515, 25-28.	1.3	78
21	Contributions of Aspergillus fumigatus ATP-Binding Cassette Transporter Proteins to Drug Resistance and Virulence. Eukaryotic Cell, 2013, 12, 1619-1628.	3.4	78
22	Saccharomyces cerevisiae Multidrug Resistance Gene Expression Inversely Correlates with the Status of the FOComponent of the Mitochondrial ATPase. Journal of Biological Chemistry, 2001, 276, 47844-47852.	1.6	76
23	Coordinate Control of Sphingolipid Biosynthesis and Multidrug Resistance in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2001, 276, 23674-23680.	1.6	71
24	Compartment-specific Synthesis of Phosphatidylethanolamine Is Required for Normal Heavy Metal Resistance. Molecular Biology of the Cell, 2010, 21, 443-455.	0.9	71
25	Retrograde regulation of multidrug resistance in Saccharomyces cerevisiae. Gene, 2005, 354, 15-21.	1.0	66
26	Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization. Journal of Biological Chemistry, 2005, 280, 40524-40533.	1.6	65
27	Regulation of the CgPdr1 Transcription Factor from the Pathogen Candida glabrata. Eukaryotic Cell, 2011, 10, 187-197.	3.4	65
28	Saccharomyces cerevisiae Basic Region-Leucine Zipper Protein Regulatory Networks Converge at the ATR1 Structural Gene. Journal of Biological Chemistry, 1997, 272, 23224-23230.	1.6	64
29	Differential Regulation of Ceramide Synthase Components LAC1 and LAG1 in Saccharomyces cerevisiae. Eukaryotic Cell, 2004, 3, 880-892.	3.4	60
30	AtrR Is an Essential Determinant of Azole Resistance in Aspergillus fumigatus. MBio, 2019, 10, .	1.8	59
31	Coordinate control of lipid composition and drug transport activities is required for normal multidrug resistance in fungi. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 852-859.	1.1	50
32	Transcription Factors Regulating the Response to Oxidative Stress in Yeast. Antioxidants and Redox Signaling, 2002, 4, 123-140.	2.5	49
33	Differential Roles of Transcriptional Mediator Subunits in Regulation of Multidrug Resistance Gene Expression in <i>Saccharomyces cerevisiae</i> <in>i> Molecular Biology of the Cell, 2010, 21, 2469-2482.</in>	0.9	49
34	Cross-talk between Transcriptional Regulators of Multidrug Resistance in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2001, 276, 8812-8819.	1.6	48
35	Long Chain Base Tolerance in Saccharomyces cerevisiae Is Induced by Retrograde Signals from the Mitochondria. Journal of Biological Chemistry, 2006, 281, 6376-6384.	1.6	47
36	Compensatory activation of the multidrug transporters Pdr5p, Snq2p, and Yor1p by Pdr1p in <i>Saccharomyces cerevisiae </i> . FEBS Letters, 2008, 582, 977-983.	1.3	47

#	Article	IF	CITATIONS
37	Contributions of both ATP-Binding Cassette Transporter and Cyp51A Proteins Are Essential for Azole Resistance in Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	47
38	Mutational analysis of the Saccharomyces cerevisiae ATPâ€binding cassette transporter protein Ycf1p. Molecular Microbiology, 1997, 25, 683-694.	1.2	45
39	Evidence for the Bifunctional Nature of Mitochondrial Phosphatidylserine Decarboxylase: Role in Pdr3-Dependent Retrograde Regulation of <i>PDR5</i> Expression. Molecular and Cellular Biology, 2008, 28, 5851-5864.	1.1	43
40	Divergent Transcriptional Control of Multidrug Resistance Genes in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 2098-2104.	1.6	42
41	Multiple mechanisms contribute to the development of clinically significant azole resistance in Aspergillus fumigatus. Frontiers in Microbiology, 2015, 6, 70.	1.5	42
42	Evidence that Ergosterol Biosynthesis Modulates Activity of the Pdr1 Transcription Factor in Candida glabrata. MBio, 2019, 10, .	1.8	42
43	Proteolytic Degradation of the Yap1 Transcription Factor Is Regulated by Subcellular Localization and the E3 Ubiquitin Ligase Not4. Journal of Biological Chemistry, 2012, 287, 26796-26805.	1.6	41
44	Control of Plasma Membrane Permeability by ABC Transporters. Eukaryotic Cell, 2015, 14, 442-453.	3.4	39
45	Identification of Genomic Binding Sites for Candida glabrata Pdr1 Transcription Factor in Wild-Type and I• ⁰ Cells. Antimicrobial Agents and Chemotherapy, 2014, 58, 6904-6912.	1.4	37
46	Differential Oxidant Tolerance Determined by the Key Transcription Factor Yap1 Is Controlled by Levels of the Yap1-binding Protein, Ybp1. Journal of Biological Chemistry, 2011, 286, 34071-34081.	1.6	35
47	Vacuolar Import of Phosphatidylcholine Requires the ATPâ€Binding Cassette Transporter Ybt1. Traffic, 2011, 12, 1257-1268.	1.3	34
48	Cryptococcus neoformans Yap1 is required for normal fluconazole and oxidative stress resistance. Fungal Genetics and Biology, 2015, 74, 1-9.	0.9	32
49	Transcriptional Regulation by Lge1p Requires a Function Independent of Its Role in Histone H2B Ubiquitination*. Journal of Biological Chemistry, 2005, 280, 2759-2770.	1.6	30
50	YBP1 and Its Homologue YBP2/YBH1 Influence Oxidative-Stress Tolerance by Nonidentical Mechanisms in Saccharomyces cerevisiae. Eukaryotic Cell, 2004, 3, 318-330.	3.4	29
51	Negative Transcriptional Regulation of Multidrug Resistance Gene Expression by an Hsp70 Protein. Journal of Biological Chemistry, 2007, 282, 26822-26831.	1.6	29
52	Regulation of Yeast Nutrient Permease Endocytosis by ATP-binding Cassette Transporters and a Seven-transmembrane Protein, RSB1. Journal of Biological Chemistry, 2010, 285, 35792-35802.	1.6	29
53	Hyperactive forms of the Pdr1p transcription factor fail to respond to positive regulation by the Hsp70 protein Pdr13p. Molecular Microbiology, 2000, 36, 402-413.	1.2	26
54	Analysis of Promoter Function in Aspergillus fumigatus. Eukaryotic Cell, 2012, 11, 1167-1177.	3.4	26

#	Article	IF	CITATIONS
55	Positive autoregulation and repression of transactivation are key regulatory features of the <i>Candida glabrata</i> Pdr1 transcription factor. Molecular Microbiology, 2018, 107, 747-764.	1.2	26
56	Functional information from clinically-derived drug resistant forms of the Candida glabrata Pdr1 transcription factor. PLoS Genetics, 2020, 16, e1009005.	1.5	26
57	Identification of Interdependent Signals Required for Anterograde Traffic of the ATP-binding Cassette Transporter Protein Yor1p. Journal of Biological Chemistry, 2002, 277, 34860-34869.	1.6	23
58	The Candida glabrata Upc2A transcription factor is a global regulator of antifungal drug resistance pathways. PLoS Genetics, 2021, 17, e1009582.	1.5	22
59	ROD1, a Novel Gene Conferring Multiple Resistance Phenotypes in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1996, 271, 2914-2920.	1.6	19
60	Jjj1 Is a Negative Regulator of Pdr1-Mediated Fluconazole Resistance in Candida glabrata. MSphere, 2018, 3, .	1.3	18
61	<i>Candida auris</i> : The Canary in the Mine of Antifungal Drug Resistance. ACS Infectious Diseases, 2019, 5, 1487-1492.	1.8	17
62	TFIIA Plays a Role in the Response to Oxidative Stress. Eukaryotic Cell, 2006, 5, 1081-1090.	3.4	16
63	Multiple interfaces control activity of the Candida glabrata Pdr1 transcription factor mediating azole drug resistance. Current Genetics, 2019, 65, 103-108.	0.8	16
64	Linkage between genes involved in azole resistance and ergosterol biosynthesis. PLoS Pathogens, 2020, 16, e1008819.	2.1	16
65	The Tissue-Specific Mammalian Transcription Factor, Pit-1, Activates Transcription inSaccharomyces cerevisiae. Molecular Endocrinology, 1991, 5, 1239-1245.	3.7	14
66	Functional analysis of an ATP-binding cassette transporter protein from Aspergillus fumigatus by heterologous expression in Saccharomyces cerevisiae. Fungal Genetics and Biology, 2013, 57, 85-91.	0.9	14
67	Construction and Use of a Recyclable Marker To Examine the Role of Major Facilitator Superfamily Protein Members in Candida glabrata Drug Resistance Phenotypes. MSphere, 2018, 3, .	1.3	13
68	Analysis of second-site mutations that suppress the multiple drug resistance phenotype of the yeast PDR1-7 allele. Gene, 1995, 167, 151-155.	1.0	10
69	Negative regulation of <i>Candida glabrata</i> Pdr1 by the deubiquitinase subunit Bre5 occurs in a ubiquitin independent manner. Molecular Microbiology, 2018, 110, 309-323.	1.2	9
70	Azole-Resistant Alleles of <i>ERG11</i> in Candida glabrata Trigger Activation of the Pdr1 and Upc2A Transcription Factors. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0209821.	1.4	7
71	Differential Functions of Individual Transcription Factor Binding Sites in the Tandem Repeats Found in Clinically Relevant <i>cyp51A</i> Promoters in Aspergillus fumigatus. MBio, 2022, 13, e0070222.	1.8	7
72	Unveiling the transcriptional control of pleiotropic drug resistance in Saccharomyces cerevisiae : Contributions of André Goffeau and his group. Yeast, 2019, 36, 195-200.	0.8	5

#	Article	IF	CITATIONS
73	Redox sensing and histidine oxidation: no longer PerR-fect strangers. , 2006, 2, 234-235.		4
74	Targeted gene deletion in Aspergillus fumigatus using microbial machinery and a recyclable marker. Journal of Microbiological Methods, 2013, 95, 373-378.	0.7	4
75	Aspergillus fumigatus <i>ffmA</i> Encodes a C ₂ H ₂ -Containing Transcriptional Regulator That Modulates Azole Resistance and Is Required for Normal Growth. MSphere, 2022, 7, e0093821.	1.3	4
76	Loss-of-Function <i>ROX1</i> Mutations Suppress the Fluconazole Susceptibility of <i>upc2A</i> \hat{l} " Mutation in Candida glabrata, Implicating Additional Positive Regulators of Ergosterol Biosynthesis. MSphere, 2021, 6, e0083021.	1.3	3
77	Feelin' it: Differential oxidative stress sensing mediated by Cyclin C. Microbial Cell, 2015, 2, 305-307.	1.4	1
78	Chapter 17 Oxidant-specific protein folding during fungal oxidative stress: Activation and function of the yaplp transcription factor in Saccharomyces cerevisiae. British Mycological Society Symposia Series, 2008, , 275-290.	0.5	0
79	Novel Regulation of Lipid Metabolism by a Phosphatidylinositol Transfer Protein and a Phosphatidylinositol 4â€Kinase. FASEB Journal, 2019, 33, lb330.	0.2	0
80	Title is missing!. , 2020, 16, e1009005.		0
81	Title is missing!. , 2020, 16, e1009005.		0
82	Title is missing!. , 2020, 16, e1009005.		0
83	Title is missing!. , 2020, 16, e1009005.		0
84	Title is missing!. , 2020, 16, e1009005.		0
85	Title is missing!. , 2020, 16, e1009005.		O