Rakez Kayed

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/582343/rakez-kayed-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

166 22,685 56 150 h-index g-index citations papers 25,641 6.7 7.7 200 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
166	Alltau oligomer interplay at human synapses supports shifting therapeutic targets for Alzheimer disease Cellular and Molecular Life Sciences, 2022, 79, 222	10.3	2
165	Lysine 63-linked ubiquitination of tau oligomers contributes to the pathogenesis of Alzheimerß disease <i>Journal of Biological Chemistry</i> , 2022 , 101766	5.4	1
164	Amyloid [Tau, and Esynuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases <i>Progress in Neurobiology</i> , 2022 , 102270	10.9	3
163	Post-translational Modifications of the p53 Protein and the Impact in Alzheimer Disease: A Review of the Literature <i>Frontiers in Aging Neuroscience</i> , 2022 , 14, 835288	5.3	2
162	Quantification and targeting of elusive neurotoxic amyloid oligomers <i>Cell Reports Medicine</i> , 2022 , 3, 100636	18	O
161	Tau Modulates mRNA Transcription, Alternative Polyadenylation Profiles of hnRNPs, Chromatin Remodeling and Spliceosome Complexes <i>Frontiers in Molecular Neuroscience</i> , 2021 , 14, 742790	6.1	1
160	Dynamic interactions and Ca-binding modulate the holdase-type chaperone activity of S100B preventing tau aggregation and seeding. <i>Nature Communications</i> , 2021 , 12, 6292	17.4	O
159	Early alterations of neurovascular unit in the retina in mouse models of tauopathy. <i>Acta Neuropathologica Communications</i> , 2021 , 9, 51	7.3	4
158	Tau induces formation of Bynuclein filaments with distinct molecular conformations. <i>Biochemical and Biophysical Research Communications</i> , 2021 , 554, 145-150	3.4	3
157	Alzheimerß disease brain-derived extracellular vesicles spread tau pathology in interneurons. <i>Brain</i> , 2021 , 144, 288-309	11.2	33
156	Curcumin as Scaffold for Drug Discovery against Neurodegenerative Diseases. <i>Biomedicines</i> , 2021 , 9,	4.8	2
155	Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer Disease, Parkinson Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. <i>Chemical Reviews</i> , 2021 , 121, 2545-2647	68.1	128
154	Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimerß disease and frontotemporal dementia. <i>Cell Reports</i> , 2021 , 36, 109419	10.6	12
153	Infectious etiology and amyloidosis in Alzheimerß disease: The puzzle continues. <i>Journal of Biological Chemistry</i> , 2021 , 297, 100936	5.4	2
152	Synaptic dysregulation and hyperexcitability induced by intracellular amyloid beta oligomers. <i>Aging Cell</i> , 2021 , 20, e13455	9.9	2
151	Caspase inhibition mitigates tau cleavage and neurotoxicity in iPSC-induced neurons with the V337M[MAPT[mutation <i>Alzheimern</i> and Dementia, 2021 , 17 Suppl 3, e051471	1.2	
150	AD- and PSP-specific brain-derived tau oligomers engage synapses with different dynamic <i>Alzheimern</i> s and Dementia, 2021 , 17 Suppl 3, e054394	1.2	

(2019-2020)

149	Elucidating the pathogenic mechanisms of AD brain-derived, tau-containing extracellular vesicles: Highly transmissible and preferential propagation to GABAergic neurons. <i>Alzheimern</i> s and Dementia, 2020 , 16, e037316	1.2	О
148	Differential dynamics of Aland tau oligomer synaptic binding may suggest diverse therapeutic targets for early vs. late Alzheimerß disease. <i>Alzheimers and Dementia</i> , 2020 , 16, e038045	1.2	
147	Innate immune activation of the NLRP3 inflammasome pathway drives tau pathology. <i>Alzheimern</i> and Dementia, 2020 , 16, e039815	1.2	
146	Soluble endogenous oligomeric Bynuclein species in neurodegenerative diseases: Expression, spreading, and cross-talk. <i>Journal of Parkinsons Disease</i> , 2020 , 10, 791-818	5.3	23
145	Polymorphic Bynuclein Strains Modified by Dopamine and Docosahexaenoic Acid Interact Differentially with Tau Protein. <i>Molecular Neurobiology</i> , 2020 , 57, 2741-2765	6.2	12
144	Internalization mechanisms of brain-derived tau oligomers from patients with Alzheimerß disease, progressive supranuclear palsy and dementia with Lewy bodies. <i>Cell Death and Disease</i> , 2020 , 11, 314	9.8	31
143	Advances and considerations in AD tau-targeted immunotherapy. <i>Neurobiology of Disease</i> , 2020 , 134, 104707	7.5	34
142	TDP-43 and Tau Oligomers in Alzheimerß Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia. <i>Neurobiology of Disease</i> , 2020 , 146, 105130	7.5	19
141	Functional Integrity of Synapses in the Central Nervous System of Cognitively Intact Individuals with High Alzheimerß Disease Neuropathology Is Associated with Absence of Synaptic Tau Oligomers. <i>Journal of Alzheimern</i> Disease, 2020 , 78, 1661-1678	4.3	7
140	P53 aggregation, interactions with tau, and impaired DNA damage response in Alzheimerß disease. <i>Acta Neuropathologica Communications</i> , 2020 , 8, 132	7.3	28
139	Modulating disease-relevant tau oligomeric strains by small molecules. <i>Journal of Biological Chemistry</i> , 2020 , 295, 14807-14825	5.4	12
138	RNA-binding proteins Musashi and tau soluble aggregates initiate nuclear dysfunction. <i>Nature Communications</i> , 2020 , 11, 4305	17.4	24
137	Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer disease from a ferroptosis perspective. <i>Progress in Neurobiology</i> , 2020 , 184, 101716	10.9	49
136	Tau oligomers mediate aggregation of RNA-binding proteins Musashi1 and Musashi2 inducing Lamin alteration. <i>Aging Cell</i> , 2019 , 18, e13035	9.9	15
135	Neurotoxic tau oligomers after single versus repetitive mild traumatic brain injury. <i>Brain Communications</i> , 2019 , 1, fcz004	4.5	14
134	Tau Interacts with the C-Terminal Region of	3.2	25
133	Near Infrared Light Treatment Reduces Synaptic Levels of Toxic Tau Oligomers in Two Transgenic Mouse Models of Human Tauopathies. <i>Molecular Neurobiology</i> , 2019 , 56, 3341-3355	6.2	16
132	P4-520: TAU OLIGOMERS MEDIATE AGGREGATION OF RNA-BINDING PROTEINS MUSASHI1- AND MUSASHI2-INDUCING NUCLEAR MEMBRANE ALTERATION IN ALZHEIMER DISEASE 2019 , 15, P1513-F	21513	

131	NLRP3 inflammasome activation drives tau pathology. <i>Nature</i> , 2019 , 575, 669-673	50.4	375
130	Toxic Tau Oligomers Modulated by Novel Curcumin Derivatives. <i>Scientific Reports</i> , 2019 , 9, 19011	4.9	24
129	Elevated phospholipase D isoform 1 in Alzheimerß disease patientsPhippocampus: Relevance to synaptic dysfunction and memory deficits. <i>Alzheimern and Dementia: Translational Research and Clinical Interventions</i> , 2018 , 4, 89-102	6	19
128	Prospects for strain-specific immunotherapy in Alzheimerß disease and tauopathies. <i>Npj Vaccines</i> , 2018 , 3, 9	9.5	33
127	Azure C Targets and Modulates Toxic Tau Oligomers. ACS Chemical Neuroscience, 2018, 9, 1317-1326	5.7	23
126	⊞ynuclein Oligomers Induce a Unique Toxic Tau Strain. <i>Biological Psychiatry</i> , 2018 , 84, 499-508	7.9	40
125	Tau oligomers mediate ⊞ynuclein toxicity and can be targeted by immunotherapy. <i>Molecular Neurodegeneration</i> , 2018 , 13, 13	19	43
124	Binding and neurotoxicity mitigation of toxic tau oligomers by synthetic heparin like oligosaccharides. <i>Chemical Communications</i> , 2018 , 54, 10120-10123	5.8	16
123	Soluble tau aggregates, not large fibrils, are the toxic species that display seeding and cross-seeding behavior. <i>Protein Science</i> , 2018 , 27, 1901-1909	6.3	50
122	Preparation and Characterization of Tau Oligomer Strains. <i>Methods in Molecular Biology</i> , 2018 , 1779, 113-146	1.4	7
121	O2-02-06: PROPAGATION AND DIVERSE EFFECTS OF DISEASE-SPECIFIC PRION-LIKE TAU OLIGOMERIC STRAINS 2018 , 14, P612-P612		
120	P1-021: TOXICITY AND PROPAGATION OF TBI BRAIN-DERIVED SOLUBLE TAU STRAINS 2018 , 14, P273-	P273	
119	O2-01-03: SELECTED MICRO RNAS FROM NEURAL STEM CELL D ERIVED EXOSOMES INCREASE SYNAPTIC RESILIENCE TO TAU AND AIDLIGOMERS 2018 , 14, P609-P609		
118	P3-170: INCREASED SYNAPTIC SENSITIVITY TO ALAND TAU OLIGOMERS IN THE AGING CNS AS A FUNCTION OF DECREASING NEURAL STEM CELLS 2018 , 14, P1133-P1133		
117	P3-167: INHIBITION OF PHOSPHOLIPASE D1 AS A THERAPEUTIC IN AD-RELATED MEMORY DEFICITS 2018 , 14, P1131-P1132		
116	P4-023: TAU IMMUNOTHERAPY FOR ALPHA-SYNUCLEINOPATHY 2018 , 14, P1442-P1442		
115	P1-025: EXOSOMES CONTAINING SPECIFIC TAU OLIGOMER FORMATIONS ACCELERATE PATHOLOGICAL TAU PHOSPHORYLATION IN C57BL/6 MICE 2018 , 14, P275-P275		1
114	O5-05-06: EVALUATING TAU OLIGOMERS PASSIVE IMMUNOTHERAPY USING AGED TRANSGENIC ANIMALS OF TAUOPATHY 2018 , 14, P1657-P1657		

O4-05-04: Tau Immunotherapy for Alpha-Synucleinopathy **2018**, 14, P1412-P1412

112	AAV2-mediated GRP78 Transfer Alleviates Retinal Neuronal Injury by Downregulating ER Stress and Tau Oligomer Formation 2018 , 59, 4670-4682		9
111	Formation of Toxic Oligomeric Assemblies of RNA-binding Protein: Musashi in Alzheimer ß disease. <i>Acta Neuropathologica Communications</i> , 2018 , 6, 113	7.3	17
110	iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. <i>Neuron</i> , 2017 , 94, 278-293.e9	13.9	445
109	Tau Oligomers in Sera of Patients with Alzheimer Disease and Aged Controls. <i>Journal of Alzheimer</i> Disease, 2017 , 58, 471-478	4.3	12
108	Selective lowering of synapsins induced by oligomeric Bynuclein exacerbates memory deficits. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E4648-E4657	,11.5	34
107	Tau oligomers in cerebrospinal fluid in Alzheimerß disease. <i>Annals of Clinical and Translational Neurology</i> , 2017 , 4, 226-235	5.3	40
106	Critical Role of the CXCL10/C-X-C Chemokine Receptor 3 Axis in Promoting Leukocyte Recruitment and Neuronal Injury during Traumatic Optic Neuropathy Induced by Optic Nerve Crush. <i>American Journal of Pathology</i> , 2017 , 187, 352-365	5.8	19
105	Tau Oligomers as Pathogenic Seeds: Preparation and Propagation In Vitro and In Vivo. <i>Methods in Molecular Biology</i> , 2017 , 1523, 141-157	1.4	24
104	Cerebral Microvascular Accumulation of Tau Oligomers in Alzheimerß Disease and Related Tauopathies 2017 , 8, 257-266		55
103	[F40703]: TAU OLIGOMERIC STRAINS IN SYNUCLEINOPATHIES 2017 , 13, P1219-P1220		
102	[P4월56]: TAU AND P53 IN ALZHEIMER® DISEASE 2017 , 13, P1505		1
101	[P4월06]: INVESTIGATING THE POTENTIAL OF NOVEL CURCUMIN DERIVATIVES IN TARGETING AND MODULATING TOXIC TAU OLIGOMERIC STRAINS 2017 , 13, P1486		
100	Oligomer Formation and Cross-Seeding: The New Frontier. <i>Israel Journal of Chemistry</i> , 2017 , 57, 665-67.	33.4	5
99	[O10703]: SYNAPTIC RESILIENCE TO TAU AND AMYLOID BETA OLIGOMERS INDUCED BY NEURAL STEM CELL-DERIVED EXOSOMES 2017 , 13, P205		
98	[P4월51]: TBI AND AD: SIMILAR TAU-INDUCED NEURODEGENERATION? 2017 , 13, P1503-P1504		
97	Tau Oligomers Associate with Inflammation in the Brain and Retina of Tauopathy Mice and in Neurodegenerative Diseases. <i>Journal of Alzheimerns Disease</i> , 2017 , 55, 1083-1099	4.3	87
96	Alamyloid Pathology Affects the Hearts of Patients With Alzheimer Bobsease: Mind the Heart. <i>Journal of the American College of Cardiology</i> , 2016 , 68, 2395-2407	15.1	81

95	Tau Oligomers Derived from Traumatic Brain Injury Cause Cognitive Impairment and Accelerate Onset of Pathology in Htau Mice. <i>Journal of Neurotrauma</i> , 2016 , 33, 2034-2043	5.4	57
94	Caspase-cleaved tau exhibits rapid memory impairment associated with tau oligomers in a transgenic mouse model. <i>Neurobiology of Disease</i> , 2016 , 87, 19-28	7.5	39
93	Therapeutic Approaches Targeting Pathological Tau Aggregates. <i>Current Pharmaceutical Design</i> , 2016 , 22, 4028-39	3.3	9
92	The Role of Amyloid-Dligomers in Toxicity, Propagation, and Immunotherapy. <i>EBioMedicine</i> , 2016 , 6, 42-49	8.8	365
91	Potential mechanisms and implications for the formation of tau oligomeric strains. <i>Critical Reviews in Biochemistry and Molecular Biology</i> , 2016 , 51, 482-496	8.7	40
90	Tau immunotherapy modulates both pathological tau and upstream amyloid pathology in an Alzheimerß disease mouse model. <i>Journal of Neuroscience</i> , 2015 , 35, 4857-68	6.6	99
89	Antibody against Small Aggregated Peptide Specifically Recognizes Toxic AE42 Oligomers in Alzheimer Disease. <i>ACS Chemical Neuroscience</i> , 2015 , 6, 1981-9	5.7	14
88	Prefibrillar Tau oligomers alter the nucleic acid protective function of Tau in hippocampal neurons in vivo. <i>Neurobiology of Disease</i> , 2015 , 82, 540-551	7.5	48
87	The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration. <i>Aging Cell</i> , 2015 , 14, 715-24	9.9	51
86	Pathological interface between oligomeric alpha-synuclein and tau in synucleinopathies. <i>Biological Psychiatry</i> , 2015 , 78, 672-83	7.9	109
85	A native interactor scaffolds and stabilizes toxic ATAXIN-1 oligomers in SCA1. <i>ELife</i> , 2015 , 4,	8.9	23
84	Ataxin-1 oligomers induce local spread of pathology and decreasing them by passive immunization slows Spinocerebellar ataxia type 1 phenotypes. <i>ELife</i> , 2015 , 4,	8.9	12
83	Therapeutic approaches against common structural features of toxic oligomers shared by multiple amyloidogenic proteins. <i>Biochemical Pharmacology</i> , 2014 , 88, 468-78	6	84
82	Passive immunization with Tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. <i>Journal of Neuroscience</i> , 2014 , 34, 4260-	- 72 6	193
81	Advances in therapeutics for neurodegenerative tauopathies: moving toward the specific targeting of the most toxic tau species. <i>ACS Chemical Neuroscience</i> , 2014 , 5, 752-69	5.7	51
80	TDP-43 Phosphorylation by casein kinase Ipromotes oligomerization and enhances toxicity in vivo. <i>Human Molecular Genetics</i> , 2014 , 23, 1025-35	5.6	65
79	Amyloid-Ibligomers as a template for secondary amyloidosis in Alzheimerß disease. <i>Neurobiology of Disease</i> , 2014 , 71, 14-23	7.5	46
78	P1-122: OLIGOMERS OF A-SYNUCLEIN CROSS-SEED TAU AND EXTEND LIFETIME OF TAU TOXIC CONFORMATION 2014 , 10, P345-P345		

77	P3-066: TDP-43 HYBRID OLIGOMERS IN ALZHEIMER® DISEASE 2014 , 10, P651-P651		
76	O1-08-06: TAU OLIGOMERS DERIVED FROM TRAUMATIC BRAIN INJURY CAUSE TOXICITY AND COGNITIVE IMPAIRMENT IN HTAU MICE 2014 , 10, P146-P146		
75	P4-215: TAU OLIGOMER-SPECIFIC ANTIBODIES IN INTRAVENOUS IMMUNOGLOBULINS (IVIGS): POTENTIAL THERAPEUTIC SIGNIFICANCE IN ALZHEIMERIS DISEASE AND OTHER NEURODEGENERATIVE TAUOPATHIES 2014 , 10, P866-P867		
74	P2-071: PATHOLOGICAL TAU SPECIES ABROGATE NASCENT PROTEIN PRODUCTION BY ASSOCIATING WITH THE RIBOSOMAL COMPLEX: IMPLICATIONS OF A NOVEL TAU FUNCTION AND ITS PATHOGENIC LINK TO MEMORY IMPAIRMENT 2014 , 10, P495-P496		
73	O5-04-01: DIFFERENT OLIGOMERIC TAU STRAINS ARE DETECTED WITH NOVEL ANTI-TAU OLIGOMER-SPECIFIC ANTIBODIES 2014 , 10, P297-P297		
72	Specific targeting of tau oligomers in Htau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. <i>Journal of Alzheimern</i> Disease, 2014 , 40 Suppl 1, S97-S111	4.3	116
71	The formation of tau pore-like structures is prevalent and cell specific: possible implications for the disease phenotypes. <i>Acta Neuropathologica Communications</i> , 2014 , 2, 56	7:3	50
70	Characterization of tau oligomeric seeds in progressive supranuclear palsy. <i>Acta Neuropathologica Communications</i> , 2014 , 2, 73	7.3	60
69	Immunotherapy for the treatment of Alzheimerß disease: amyloid-lor tau, which is the right target?. <i>ImmunoTargets and Therapy</i> , 2014 , 3, 19-28	9	9
68	Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. <i>Journal of Biological Chemistry</i> , 2013 , 288, 1856-70	5.4	333
67	Dual role of p53 amyloid formation in cancer; loss of function and gain of toxicity. <i>Biochemical and Biophysical Research Communications</i> , 2013 , 430, 963-8	3.4	58
66	Tau aggregates as immunotherapeutic targets. Frontiers in Bioscience - Scholar, 2013 , 5, 426-38	2.4	27
65	Molecular mechanisms of amyloid oligomers toxicity. <i>Journal of Alzheimern</i> Disease, 2013 , 33 Suppl 1, S67-78	4.3	235
64	Design of metastable Esheet oligomers from natively unstructured peptide. <i>ACS Chemical Neuroscience</i> , 2013 , 4, 1520-3	5.7	14
63	Rapid accumulation of endogenous tau oligomers in a rat model of traumatic brain injury: possible link between traumatic brain injury and sporadic tauopathies. <i>Journal of Biological Chemistry</i> , 2013 , 288, 17042-17050	5.4	91
62	Formation and propagation of tau oligomeric seeds. Frontiers in Neurology, 2013, 4, 93	4.1	75
61	Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. <i>Journal of Clinical Investigation</i> , 2013 , 123, 4158-69	15.9	169
60	Alzheimer ß disease imaging with a novel Tau targeted near infrared ratiometric probe. <i>American Journal of Nuclear Medicine and Molecular Imaging</i> , 2013 , 3, 102-17	2.2	3

59 O4-06-01: Specific clearance of tau oligomers by passive immunization **2012**, 8, P624-P625

58	Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. <i>Scientific Reports</i> , 2012 , 2, 700	4.9	305
57	Vaccination with a non-human random sequence amyloid oligomer mimic results in improved cognitive function and reduced plaque deposition and micro hemorrhage in Tg2576 mice. <i>Molecular Neurodegeneration</i> , 2012 , 7, 37	19	30
56	Differential activation of the ER stress factor XBP1 by oligomeric assemblies. <i>Neurochemical Research</i> , 2012 , 37, 1707-17	4.6	34
55	Esynuclein oligomers oppose long-term potentiation and impair memory through a calcineurin-dependent mechanism: relevance to human synucleopathic diseases. <i>Journal of Neurochemistry</i> , 2012 , 120, 440-52	6	77
54	Identification of oligomers at early stages of tau aggregation in Alzheimerß disease. <i>FASEB Journal</i> , 2012 , 26, 1946-59	0.9	309
53	Association of skin with the pathogenesis and treatment of neurodegenerative amyloidosis. <i>Frontiers in Neurology</i> , 2012 , 3, 5	4.1	14
52	Role of oligomers in the amyloidogenesis of primary cutaneous amyloidosis. <i>Journal of the American Academy of Dermatology</i> , 2011 , 65, 1023-31	4.5	10
51	Amyloid-lannular protofibrils evade fibrillar fate in Alzheimer disease brain. <i>Journal of Biological Chemistry</i> , 2011 , 286, 22122-30	5.4	103
50	Alzheimers disease: review of emerging treatment role for intravenous immunoglobulins. <i>Journal of Central Nervous System Disease</i> , 2011 , 3, 67-73	4.4	6
49	Astrocytes contain amyloid-lannular protofibrils in Alzheimerß disease brains. <i>FEBS Letters</i> , 2011 , 585, 3052-7	3.8	31
48	Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. <i>Molecular Neurodegeneration</i> , 2011 , 6, 39	19	338
47	Therapeutic removal of amyloid deposits in cutaneous amyloidosis by localised intra-lesional injections of anti-amyloid antibodies. <i>Experimental Dermatology</i> , 2010 , 19, 904-11	4	9
46	Following activation of the amyloid cascade, apolipoprotein E4 drives the in vivo oligomerization of amyloid-Iresulting in neurodegeneration. <i>Journal of Alzheimern</i> Disease, 2010 , 22, 959-70	4.3	21
45	Loss of alpha7 nicotinic receptors enhances beta-amyloid oligomer accumulation, exacerbating early-stage cognitive decline and septohippocampal pathology in a mouse model of Alzheimerß disease. <i>Journal of Neuroscience</i> , 2010 , 30, 2442-53	6.6	149
44	Anti-tau oligomers passive vaccination for the treatment of Alzheimer disease. <i>Hum Vaccin</i> , 2010 , 6, 931	-5	31
43	New vaccine development for chronic brain disease. <i>Neuropsychopharmacology</i> , 2010 , 35, 354	8.7	4
42	Amyloid-beta peptide and oligomers in the brain and cerebrospinal fluid of aged canines. <i>Journal of Alzheimern</i> Disease, 2010 , 20, 637-46	4.3	54

41	Preparation and characterization of neurotoxic tau oligomers. <i>Biochemistry</i> , 2010 , 49, 10039-41	3.2	254
40	Amyloid-beta oligomers impair fear conditioned memory in a calcineurin-dependent fashion in mice. <i>Journal of Neuroscience Research</i> , 2010 , 88, 2923-32	4.4	75
39	Conformation dependent monoclonal antibodies distinguish different replicating strains or conformers of prefibrillar Albligomers. <i>Molecular Neurodegeneration</i> , 2010 , 5, 57	19	110
38	A fibril-specific, conformation-dependent antibody recognizes a subset of Abeta plaques in Alzheimer disease, Down syndrome and Tg2576 transgenic mouse brain. <i>Acta Neuropathologica</i> , 2009 , 118, 505-17	14.3	37
37	Prefilament tau species as potential targets for immunotherapy for Alzheimer disease and related disorders. <i>Current Opinion in Immunology</i> , 2009 , 21, 359-63	7.8	44
36	Poloxamer 188 copolymer membrane sealant rescues toxicity of amyloid oligomers in vitro. <i>Journal of Molecular Biology</i> , 2009 , 391, 577-85	6.5	26
35	Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. <i>Journal of Biological Chemistry</i> , 2009 , 284, 4230-7	5.4	255
34	Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate. <i>PLoS ONE</i> , 2009 , 4, e5562	3.7	83
33	Amyloid Beta annular protofibrils in cell processes and synapses accumulate with aging and Alzheimer-associated genetic modification. <i>International Journal of Alzheimers Disease</i> , 2009 , 2009,	3.7	16
32	Selective induction of calcineurin activity and signaling by oligomeric amyloid beta. <i>Aging Cell</i> , 2008 , 7, 824-35	9.9	75
31	CNI-1493 inhibits Abeta production, plaque formation, and cognitive deterioration in an animal model of Alzheimer disease. <i>Journal of Experimental Medicine</i> , 2008 , 205, 1593-9	16.6	20
30	Formation of soluble amyloid oligomers and amyloid fibrils by the multifunctional protein vitronectin. <i>Molecular Neurodegeneration</i> , 2008 , 3, 16	19	42
29	Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. <i>Molecular Neurodegeneration</i> , 2007 , 2, 18	19	544
28	Pore-forming proteins share structural and functional homology with amyloid oligomers. <i>NeuroMolecular Medicine</i> , 2007 , 9, 270-5	4.6	61
27	Exercise reverses preamyloid oligomer and prolongs survival in alphaB-crystallin-based desmin-related cardiomyopathy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 5995-6000	11.5	66
26	Toxic human islet amyloid polypeptide (h-IAPP) oligomers are intracellular, and vaccination to induce anti-toxic oligomer antibodies does not prevent h-IAPP-induced beta-cell apoptosis in h-IAPP transgenic mice. <i>Diabetes</i> , 2007 , 56, 1324-32	0.9	152
25	Age-dependent axonal degeneration in an Alzheimer mouse model. <i>Neurobiology of Aging</i> , 2007 , 28, 1689-99	5.6	91
24	Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. <i>Journal of Biological Chemistry</i> , 2007 , 282, 10311-2	4 5·4	547

23	ERK1/2 activation mediates Abeta oligomer-induced neurotoxicity via caspase-3 activation and tau cleavage in rat organotypic hippocampal slice cultures. <i>Journal of Biological Chemistry</i> , 2006 , 281, 2031	5- 2 2 3	138
22	Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure. <i>Journal of General Physiology</i> , 2006 , 128, 637-47	3.4	177
21	Conformation-dependent anti-amyloid oligomer antibodies. <i>Methods in Enzymology</i> , 2006 , 413, 326-44	1.7	128
20	Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. <i>Neurology</i> , 2006 , 66, S74-8	6.5	293
19	A specific amyloid-beta protein assembly in the brain impairs memory. <i>Nature</i> , 2006 , 440, 352-7	50.4	2406
18	Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. <i>Journal of Clinical Investigation</i> , 2006 , 116, 378-85	15.9	135
17	Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. <i>Journal of Biological Chemistry</i> , 2005 , 280, 5892-901	5.4	1668
16	Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. <i>Journal of Biological Chemistry</i> , 2005 , 280, 17294-300	5.4	761
15	Beta-amyloid (Abeta) causes detachment of N1E-115 neuroblastoma cells by acting as a scaffold for cell-associated plasminogen activation. <i>Molecular and Cellular Neurosciences</i> , 2005 , 28, 496-508	4.8	6
14	Soluble Abeta oligomers ultrastructurally localize to cell processes and might be related to synaptic dysfunction in Alzheimerß disease brain. <i>Brain Research</i> , 2005 , 1031, 222-8	3.7	102
13	Oligomeric proteins ultrastructurally localize to cell processes, especially to axon terminals with higher density, but not to lipid rafts in Tg2576 mouse brain. <i>Brain Research</i> , 2005 , 1045, 224-8	3.7	17
12	Reversal of amyloid-induced heart disease in desmin-related cardiomyopathy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 13592-7	11.5	93
11	LDL phospholipid hydrolysis produces modified electronegative particles with an unfolded apoB-100 protein. <i>Journal of Lipid Research</i> , 2005 , 46, 115-22	6.3	38
10	Desmin-related cardiomyopathy in transgenic mice: a cardiac amyloidosis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 10132-6	11.5	222
9	Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. <i>Journal of Biological Chemistry</i> , 2004 , 279, 46363-6	5.4	695
8	Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. <i>Science</i> , 2003 , 300, 486-9	33.3	3389
7	Triple-transgenic model of Alzheimerß disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. <i>Neuron</i> , 2003 , 39, 409-21	13.9	3031
6	The influence of the carboxyl terminus of the Alzheimer Abeta peptide on its conformation, aggregation, and neurotoxic properties. <i>NeuroMolecular Medicine</i> , 2002 , 1, 81-94	4.6	14

LIST OF PUBLICATIONS

5	Structural and dynamic features of Alzheimerß Abeta peptide in amyloid fibrils studied by site-directed spin labeling. <i>Journal of Biological Chemistry</i> , 2002 , 277, 40810-5	5.4	325
4	Isolation, structural, and functional characterization of an apoptosis-inducing L-amino acid oxidase from leaf-nosed viper (Eristocophis macmahoni) snake venom. <i>Archives of Biochemistry and Biophysics</i> , 2000 , 384, 216-26	4.1	81
3	Rational design, conformational studies and bioactivity of highly potent conformationally constrained calcitonin analogues. <i>FEBS Journal</i> , 1999 , 265, 606-18		26
2	Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro. Journal of Molecular Biology, 1999 , 287, 781-96	6.5	326
1	Tau modulates mRNA transcription, alternative polyadenylation profiles of hnRNPs, chromatin remodeling and spliceosome complexes		1