Rakez Kayed

List of Publications by Citations

Source: https://exaly.com/author-pdf/582343/rakez-kayed-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

166 22,685 56 150 h-index g-index citations papers 25,641 6.7 200 7.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
166	Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. <i>Science</i> , 2003 , 300, 486-9	33.3	3389
165	Triple-transgenic model of Alzheimerß disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. <i>Neuron</i> , 2003 , 39, 409-21	13.9	3031
164	A specific amyloid-beta protein assembly in the brain impairs memory. <i>Nature</i> , 2006 , 440, 352-7	50.4	2406
163	Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. <i>Journal of Biological Chemistry</i> , 2005 , 280, 5892-901	5.4	1668
162	Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. <i>Journal of Biological Chemistry</i> , 2005 , 280, 17294-300	5.4	761
161	Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. <i>Journal of Biological Chemistry</i> , 2004 , 279, 46363-6	5.4	695
160	Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. <i>Journal of Biological Chemistry</i> , 2007 , 282, 10311-2	245.4	547
159	Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. <i>Molecular Neurodegeneration</i> , 2007 , 2, 18	19	544
158	iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. <i>Neuron</i> , 2017 , 94, 278-293.e9	13.9	445
157	NLRP3 inflammasome activation drives tau pathology. <i>Nature</i> , 2019 , 575, 669-673	50.4	375
156	The Role of Amyloid-Dligomers in Toxicity, Propagation, and Immunotherapy. <i>EBioMedicine</i> , 2016 , 6, 42-49	8.8	365
155	Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. <i>Molecular Neurodegeneration</i> , 2011 , 6, 39	19	338
154	Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. <i>Journal of Biological Chemistry</i> , 2013 , 288, 1856-70	5.4	333
153	Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro. Journal of Molecular Biology, 1999 , 287, 781-96	6.5	326
152	Structural and dynamic features of Alzheimer® Abeta peptide in amyloid fibrils studied by site-directed spin labeling. <i>Journal of Biological Chemistry</i> , 2002 , 277, 40810-5	5.4	325
151	Identification of oligomers at early stages of tau aggregation in Alzheimerß disease. <i>FASEB Journal</i> , 2012 , 26, 1946-59	0.9	309
150	Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. <i>Scientific Reports</i> , 2012 , 2, 700	4.9	305

(2011-2006)

149	Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. <i>Neurology</i> , 2006 , 66, S74-8	6.5	293
148	Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. <i>Journal of Biological Chemistry</i> , 2009 , 284, 4230-7	5.4	255
147	Preparation and characterization of neurotoxic tau oligomers. <i>Biochemistry</i> , 2010 , 49, 10039-41	3.2	254
146	Molecular mechanisms of amyloid oligomers toxicity. <i>Journal of Alzheimern</i> s <i>Disease</i> , 2013 , 33 Suppl 1, S67-78	4.3	235
145	Desmin-related cardiomyopathy in transgenic mice: a cardiac amyloidosis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 10132-6	11.5	222
144	Passive immunization with Tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. <i>Journal of Neuroscience</i> , 2014 , 34, 4260-	- 12 6	193
143	Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure. <i>Journal of General Physiology</i> , 2006 , 128, 637-47	3.4	177
142	Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. <i>Journal of Clinical Investigation</i> , 2013 , 123, 4158-69	15.9	169
141	Toxic human islet amyloid polypeptide (h-IAPP) oligomers are intracellular, and vaccination to induce anti-toxic oligomer antibodies does not prevent h-IAPP-induced beta-cell apoptosis in h-IAPP transgenic mice. <i>Diabetes</i> , 2007 , 56, 1324-32	0.9	152
140	Loss of alpha7 nicotinic receptors enhances beta-amyloid oligomer accumulation, exacerbating early-stage cognitive decline and septohippocampal pathology in a mouse model of Alzheimer disease. <i>Journal of Neuroscience</i> , 2010 , 30, 2442-53	6.6	149
139	ERK1/2 activation mediates Abeta oligomer-induced neurotoxicity via caspase-3 activation and tau cleavage in rat organotypic hippocampal slice cultures. <i>Journal of Biological Chemistry</i> , 2006 , 281, 20315	5- 2 5	138
138	Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. <i>Journal of Clinical Investigation</i> , 2006 , 116, 378-85	15.9	135
137	Conformation-dependent anti-amyloid oligomer antibodies. <i>Methods in Enzymology</i> , 2006 , 413, 326-44	1.7	128
136	Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimerß Disease, Parkinsonß Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. <i>Chemical Reviews</i> , 2021 , 121, 2545-2647	68.1	128
135	Specific targeting of tau oligomers in Htau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. <i>Journal of Alzheimerns Disease</i> , 2014 , 40 Suppl 1, S97-S111	4.3	116
134	Conformation dependent monoclonal antibodies distinguish different replicating strains or conformers of prefibrillar Albligomers. <i>Molecular Neurodegeneration</i> , 2010 , 5, 57	19	110
133	Pathological interface between oligomeric alpha-synuclein and tau in synucleinopathies. <i>Biological Psychiatry</i> , 2015 , 78, 672-83	7.9	109
132	Amyloid-lannular protofibrils evade fibrillar fate in Alzheimer disease brain. <i>Journal of Biological Chemistry</i> , 2011 , 286, 22122-30	5.4	103

131	Soluble Abeta oligomers ultrastructurally localize to cell processes and might be related to synaptic dysfunction in Alzheimer disease brain. <i>Brain Research</i> , 2005 , 1031, 222-8	3.7	102
130	Tau immunotherapy modulates both pathological tau and upstream amyloid pathology in an Alzheimerß disease mouse model. <i>Journal of Neuroscience</i> , 2015 , 35, 4857-68	6.6	99
129	Reversal of amyloid-induced heart disease in desmin-related cardiomyopathy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 13592-7	11.5	93
128	Rapid accumulation of endogenous tau oligomers in a rat model of traumatic brain injury: possible link between traumatic brain injury and sporadic tauopathies. <i>Journal of Biological Chemistry</i> , 2013 , 288, 17042-17050	5.4	91
127	Age-dependent axonal degeneration in an Alzheimer mouse model. <i>Neurobiology of Aging</i> , 2007 , 28, 1689-99	5.6	91
126	Tau Oligomers Associate with Inflammation in the Brain and Retina of Tauopathy Mice and in Neurodegenerative Diseases. <i>Journal of Alzheimeris Disease</i> , 2017 , 55, 1083-1099	4.3	87
125	Therapeutic approaches against common structural features of toxic oligomers shared by multiple amyloidogenic proteins. <i>Biochemical Pharmacology</i> , 2014 , 88, 468-78	6	84
124	Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate. <i>PLoS ONE</i> , 2009 , 4, e5562	3.7	83
123	Alamyloid Pathology Affects the Hearts of Patients With Alzheimer Bournal Disease: Mind Line Heart. Journal of the American College of Cardiology, 2016 , 68, 2395-2407	15.1	81
122	Isolation, structural, and functional characterization of an apoptosis-inducing L-amino acid oxidase from leaf-nosed viper (Eristocophis macmahoni) snake venom. <i>Archives of Biochemistry and Biophysics</i> , 2000 , 384, 216-26	4.1	81
121	Esynuclein oligomers oppose long-term potentiation and impair memory through a calcineurin-dependent mechanism: relevance to human synucleopathic diseases. <i>Journal of Neurochemistry</i> , 2012 , 120, 440-52	6	77
120	Formation and propagation of tau oligomeric seeds. Frontiers in Neurology, 2013, 4, 93	4.1	75
119	Amyloid-beta oligomers impair fear conditioned memory in a calcineurin-dependent fashion in mice. <i>Journal of Neuroscience Research</i> , 2010 , 88, 2923-32	4.4	75
118	Selective induction of calcineurin activity and signaling by oligomeric amyloid beta. <i>Aging Cell</i> , 2008 , 7, 824-35	9.9	75
117	Exercise reverses preamyloid oligomer and prolongs survival in alphaB-crystallin-based desmin-related cardiomyopathy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 5995-6000	11.5	66
116	TDP-43 Phosphorylation by casein kinase lipromotes oligomerization and enhances toxicity in vivo. <i>Human Molecular Genetics</i> , 2014 , 23, 1025-35	5.6	65
115	Pore-forming proteins share structural and functional homology with amyloid oligomers. <i>NeuroMolecular Medicine</i> , 2007 , 9, 270-5	4.6	61
114	Characterization of tau oligomeric seeds in progressive supranuclear palsy. <i>Acta Neuropathologica Communications</i> , 2014 , 2, 73	7.3	60

(2016-2013)

113	Dual role of p53 amyloid formation in cancer; loss of function and gain of toxicity. <i>Biochemical and Biophysical Research Communications</i> , 2013 , 430, 963-8	3.4	58	
112	Tau Oligomers Derived from Traumatic Brain Injury Cause Cognitive Impairment and Accelerate Onset of Pathology in Htau Mice. <i>Journal of Neurotrauma</i> , 2016 , 33, 2034-2043	5.4	57	
111	Cerebral Microvascular Accumulation of Tau Oligomers in Alzheimer Disease and Related Tauopathies 2017 , 8, 257-266		55	
110	Amyloid-beta peptide and oligomers in the brain and cerebrospinal fluid of aged canines. <i>Journal of Alzheimern</i> Disease, 2010 , 20, 637-46	4.3	54	
109	Advances in therapeutics for neurodegenerative tauopathies: moving toward the specific targeting of the most toxic tau species. <i>ACS Chemical Neuroscience</i> , 2014 , 5, 752-69	5.7	51	
108	The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration. <i>Aging Cell</i> , 2015 , 14, 715-24	9.9	51	
107	Soluble tau aggregates, not large fibrils, are the toxic species that display seeding and cross-seeding behavior. <i>Protein Science</i> , 2018 , 27, 1901-1909	6.3	50	
106	The formation of tau pore-like structures is prevalent and cell specific: possible implications for the disease phenotypes. <i>Acta Neuropathologica Communications</i> , 2014 , 2, 56	7.3	50	
105	Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimerß disease from a ferroptosis perspective. <i>Progress in Neurobiology</i> , 2020 , 184, 101716	10.9	49	
104	Prefibrillar Tau oligomers alter the nucleic acid protective function of Tau in hippocampal neurons in vivo. <i>Neurobiology of Disease</i> , 2015 , 82, 540-551	7.5	48	
103	Amyloid-Ibligomers as a template for secondary amyloidosis in Alzheimerß disease. <i>Neurobiology of Disease</i> , 2014 , 71, 14-23	7.5	46	
102	Prefilament tau species as potential targets for immunotherapy for Alzheimer disease and related disorders. <i>Current Opinion in Immunology</i> , 2009 , 21, 359-63	7.8	44	
101	Tau oligomers mediate Bynuclein toxicity and can be targeted by immunotherapy. <i>Molecular Neurodegeneration</i> , 2018 , 13, 13	19	43	
100	Formation of soluble amyloid oligomers and amyloid fibrils by the multifunctional protein vitronectin. <i>Molecular Neurodegeneration</i> , 2008 , 3, 16	19	42	
99	Tau oligomers in cerebrospinal fluid in Alzheimerß disease. <i>Annals of Clinical and Translational Neurology</i> , 2017 , 4, 226-235	5.3	40	
98	⊞synuclein Oligomers Induce a Unique Toxic Tau Strain. <i>Biological Psychiatry</i> , 2018 , 84, 499-508	7.9	40	
97	Potential mechanisms and implications for the formation of tau oligomeric strains. <i>Critical Reviews in Biochemistry and Molecular Biology</i> , 2016 , 51, 482-496	8.7	40	
96	Caspase-cleaved tau exhibits rapid memory impairment associated with tau oligomers in a transgenic mouse model. <i>Neurobiology of Disease</i> , 2016 , 87, 19-28	7.5	39	

95	LDL phospholipid hydrolysis produces modified electronegative particles with an unfolded apoB-100 protein. <i>Journal of Lipid Research</i> , 2005 , 46, 115-22	6.3	38
94	A fibril-specific, conformation-dependent antibody recognizes a subset of Abeta plaques in Alzheimer disease, Down syndrome and Tg2576 transgenic mouse brain. <i>Acta Neuropathologica</i> , 2009 , 118, 505-17	14.3	37
93	Selective lowering of synapsins induced by oligomeric Bynuclein exacerbates memory deficits. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E4648-E465	7 ^{11.5}	34
92	Differential activation of the ER stress factor XBP1 by oligomeric assemblies. <i>Neurochemical Research</i> , 2012 , 37, 1707-17	4.6	34
91	Advances and considerations in AD tau-targeted immunotherapy. <i>Neurobiology of Disease</i> , 2020 , 134, 104707	7.5	34
90	Prospects for strain-specific immunotherapy in Alzheimerß disease and tauopathies. <i>Npj Vaccines</i> , 2018 , 3, 9	9.5	33
89	Alzheimerß disease brain-derived extracellular vesicles spread tau pathology in interneurons. <i>Brain</i> , 2021 , 144, 288-309	11.2	33
88	Astrocytes contain amyloid-dannular protofibrils in Alzheimerß disease brains. <i>FEBS Letters</i> , 2011 , 585, 3052-7	3.8	31
87	Anti-tau oligomers passive vaccination for the treatment of Alzheimer disease. <i>Hum Vaccin</i> , 2010 , 6, 93	1-5	31
86	Internalization mechanisms of brain-derived tau oligomers from patients with Alzheimer ® disease, progressive supranuclear palsy and dementia with Lewy bodies. <i>Cell Death and Disease</i> , 2020 , 11, 314	9.8	31
85	Vaccination with a non-human random sequence amyloid oligomer mimic results in improved cognitive function and reduced plaque deposition and micro hemorrhage in Tg2576 mice. <i>Molecular Neurodegeneration</i> , 2012 , 7, 37	19	30
84	P53 aggregation, interactions with tau, and impaired DNA damage response in Alzheimerß disease. <i>Acta Neuropathologica Communications</i> , 2020 , 8, 132	7-3	28
83	Tau aggregates as immunotherapeutic targets. Frontiers in Bioscience - Scholar, 2013, 5, 426-38	2.4	27
82	Poloxamer 188 copolymer membrane sealant rescues toxicity of amyloid oligomers in vitro. <i>Journal of Molecular Biology</i> , 2009 , 391, 577-85	6.5	26
81	Rational design, conformational studies and bioactivity of highly potent conformationally constrained calcitonin analogues. <i>FEBS Journal</i> , 1999 , 265, 606-18		26
80	Tau Interacts with the C-Terminal Region of Esynuclein, Promoting Formation of Toxic Aggregates with Distinct Molecular Conformations. <i>Biochemistry</i> , 2019 , 58, 2814-2821	3.2	25
79	Tau Oligomers as Pathogenic Seeds: Preparation and Propagation In Vitro and In Vivo. <i>Methods in Molecular Biology</i> , 2017 , 1523, 141-157	1.4	24
78	RNA-binding proteins Musashi and tau soluble aggregates initiate nuclear dysfunction. <i>Nature Communications</i> , 2020 , 11, 4305	17.4	24

77	Toxic Tau Oligomers Modulated by Novel Curcumin Derivatives. Scientific Reports, 2019, 9, 19011	4.9	24
76	Soluble endogenous oligomeric Bynuclein species in neurodegenerative diseases: Expression, spreading, and cross-talk. <i>Journal of Parkinsoni</i> s <i>Disease</i> , 2020 , 10, 791-818	5.3	23
75	Azure C Targets and Modulates Toxic Tau Oligomers. ACS Chemical Neuroscience, 2018, 9, 1317-1326	5.7	23
74	A native interactor scaffolds and stabilizes toxic ATAXIN-1 oligomers in SCA1. <i>ELife</i> , 2015 , 4,	8.9	23
73	Following activation of the amyloid cascade, apolipoprotein E4 drives the in vivo oligomerization of amyloid-Iresulting in neurodegeneration. <i>Journal of Alzheimerrs Disease</i> , 2010 , 22, 959-70	4.3	21
72	CNI-1493 inhibits Abeta production, plaque formation, and cognitive deterioration in an animal model of Alzheimerß disease. <i>Journal of Experimental Medicine</i> , 2008 , 205, 1593-9	16.6	20
71	Critical Role of the CXCL10/C-X-C Chemokine Receptor 3 Axis in Promoting Leukocyte Recruitment and Neuronal Injury during Traumatic Optic Neuropathy Induced by Optic Nerve Crush. <i>American Journal of Pathology</i> , 2017 , 187, 352-365	5.8	19
70	Elevated phospholipase D isoform 1 in Alzheimerß disease patientsRhippocampus: Relevance to synaptic dysfunction and memory deficits. <i>Alzheimers and Dementia: Translational Research and Clinical Interventions</i> , 2018 , 4, 89-102	6	19
69	TDP-43 and Tau Oligomers in Alzheimerß Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia. <i>Neurobiology of Disease</i> , 2020 , 146, 105130	7.5	19
68	Oligomeric proteins ultrastructurally localize to cell processes, especially to axon terminals with higher density, but not to lipid rafts in Tg2576 mouse brain. <i>Brain Research</i> , 2005 , 1045, 224-8	3.7	17
67	Formation of Toxic Oligomeric Assemblies of RNA-binding Protein: Musashi in Alzheimerß disease. <i>Acta Neuropathologica Communications</i> , 2018 , 6, 113	7.3	17
66	Binding and neurotoxicity mitigation of toxic tau oligomers by synthetic heparin like oligosaccharides. <i>Chemical Communications</i> , 2018 , 54, 10120-10123	5.8	16
65	Near Infrared Light Treatment Reduces Synaptic Levels of Toxic Tau Oligomers in Two Transgenic Mouse Models of Human Tauopathies. <i>Molecular Neurobiology</i> , 2019 , 56, 3341-3355	6.2	16
64	Amyloid Beta annular protofibrils in cell processes and synapses accumulate with aging and Alzheimer-associated genetic modification. <i>International Journal of Alzheimerrs Disease</i> , 2009 , 2009,	3.7	16
63	Tau oligomers mediate aggregation of RNA-binding proteins Musashi1 and Musashi2 inducing Lamin alteration. <i>Aging Cell</i> , 2019 , 18, e13035	9.9	15
62	Neurotoxic tau oligomers after single versus repetitive mild traumatic brain injury. <i>Brain Communications</i> , 2019 , 1, fcz004	4.5	14
61	Antibody against Small Aggregated Peptide Specifically Recognizes Toxic AE42 Oligomers in Alzheimerß Disease. <i>ACS Chemical Neuroscience</i> , 2015 , 6, 1981-9	5.7	14
60	Design of metastable Esheet oligomers from natively unstructured peptide. <i>ACS Chemical Neuroscience</i> , 2013 , 4, 1520-3	5.7	14

59	Association of skin with the pathogenesis and treatment of neurodegenerative amyloidosis. <i>Frontiers in Neurology</i> , 2012 , 3, 5	4.1	14
58	The influence of the carboxyl terminus of the Alzheimer Abeta peptide on its conformation, aggregation, and neurotoxic properties. <i>NeuroMolecular Medicine</i> , 2002 , 1, 81-94	4.6	14
57	Tau Oligomers in Sera of Patients with Alzheimerß Disease and Aged Controls. <i>Journal of Alzheimer</i> Disease, 2017 , 58, 471-478	4.3	12
56	Polymorphic	6.2	12
55	Ataxin-1 oligomers induce local spread of pathology and decreasing them by passive immunization slows Spinocerebellar ataxia type 1 phenotypes. <i>ELife</i> , 2015 , 4,	8.9	12
54	Modulating disease-relevant tau oligomeric strains by small molecules. <i>Journal of Biological Chemistry</i> , 2020 , 295, 14807-14825	5.4	12
53	Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer disease and frontotemporal dementia. <i>Cell Reports</i> , 2021 , 36, 109419	10.6	12
52	Role of oligomers in the amyloidogenesis of primary cutaneous amyloidosis. <i>Journal of the American Academy of Dermatology</i> , 2011 , 65, 1023-31	4.5	10
51	Immunotherapy for the treatment of Alzheimerß disease: amyloid-lor tau, which is the right target?. <i>ImmunoTargets and Therapy</i> , 2014 , 3, 19-28	9	9
50	Therapeutic removal of amyloid deposits in cutaneous amyloidosis by localised intra-lesional injections of anti-amyloid antibodies. <i>Experimental Dermatology</i> , 2010 , 19, 904-11	4	9
49	Therapeutic Approaches Targeting Pathological Tau Aggregates. <i>Current Pharmaceutical Design</i> , 2016 , 22, 4028-39	3.3	9
48	AAV2-mediated GRP78 Transfer Alleviates Retinal Neuronal Injury by Downregulating ER Stress and Tau Oligomer Formation 2018 , 59, 4670-4682		9
47	Preparation and Characterization of Tau Oligomer Strains. <i>Methods in Molecular Biology</i> , 2018 , 1779, 113-146	1.4	7
46	Functional Integrity of Synapses in the Central Nervous System of Cognitively Intact Individuals with High Alzheimerß Disease Neuropathology Is Associated with Absence of Synaptic Tau Oligomers. <i>Journal of Alzheimern Disease</i> , 2020 , 78, 1661-1678	4.3	7
45	Alzheimers disease: review of emerging treatment role for intravenous immunoglobulins. <i>Journal of Central Nervous System Disease</i> , 2011 , 3, 67-73	4.4	6
44	Beta-amyloid (Abeta) causes detachment of N1E-115 neuroblastoma cells by acting as a scaffold for cell-associated plasminogen activation. <i>Molecular and Cellular Neurosciences</i> , 2005 , 28, 496-508	4.8	6
43	Oligomer Formation and Cross-Seeding: The New Frontier. Israel Journal of Chemistry, 2017, 57, 665-67	33.4	5
42	New vaccine development for chronic brain disease. <i>Neuropsychopharmacology</i> , 2010 , 35, 354	8.7	4

(2020-2021)

41	Early alterations of neurovascular unit in the retina in mouse models of tauopathy. <i>Acta Neuropathologica Communications</i> , 2021 , 9, 51	7-3	4
40	Alzheimerß disease imaging with a novel Tau targeted near infrared ratiometric probe. <i>American Journal of Nuclear Medicine and Molecular Imaging</i> , 2013 , 3, 102-17	2.2	3
39	Tau induces formation of Bynuclein filaments with distinct molecular conformations. <i>Biochemical and Biophysical Research Communications</i> , 2021 , 554, 145-150	3.4	3
38	Amyloid [Tau, and Esynuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases <i>Progress in Neurobiology</i> , 2022 , 102270	10.9	3
37	Curcumin as Scaffold for Drug Discovery against Neurodegenerative Diseases. <i>Biomedicines</i> , 2021 , 9,	4.8	2
36	Infectious etiology and amyloidosis in Alzheimerß disease: The puzzle continues. <i>Journal of Biological Chemistry</i> , 2021 , 297, 100936	5.4	2
35	Synaptic dysregulation and hyperexcitability induced by intracellular amyloid beta oligomers. <i>Aging Cell</i> , 2021 , 20, e13455	9.9	2
34	Alltau oligomer interplay at human synapses supports shifting therapeutic targets for Alzheimer disease Cellular and Molecular Life Sciences, 2022, 79, 222	10.3	2
33	Post-translational Modifications of the p53 Protein and the Impact in Alzheimer Disease: A Review of the Literature <i>Frontiers in Aging Neuroscience</i> , 2022 , 14, 835288	5.3	2
32	[P4월56]: TAU AND P53 IN ALZHEIMER® DISEASE 2017 , 13, P1505		1
31	Tau Modulates mRNA Transcription, Alternative Polyadenylation Profiles of hnRNPs, Chromatin Remodeling and Spliceosome Complexes <i>Frontiers in Molecular Neuroscience</i> , 2021 , 14, 742790	6.1	1
30	Tau modulates mRNA transcription, alternative polyadenylation profiles of hnRNPs, chromatin remodeling and spliceosome complexes		1
29	P1-025: EXOSOMES CONTAINING SPECIFIC TAU OLIGOMER FORMATIONS ACCELERATE PATHOLOGICAL TAU PHOSPHORYLATION IN C57BL/6 MICE 2018 , 14, P275-P275		1
28	Lysine 63-linked ubiquitination of tau oligomers contributes to the pathogenesis of Alzheimerß disease <i>Journal of Biological Chemistry</i> , 2022 , 101766	5.4	1
27	Elucidating the pathogenic mechanisms of AD brain-derived, tau-containing extracellular vesicles: Highly transmissible and preferential propagation to GABAergic neurons. <i>Alzheimern</i> and Dementia, 2020 , 16, e037316	1.2	0
26	Dynamic interactions and Ca-binding modulate the holdase-type chaperone activity of S100B preventing tau aggregation and seeding. <i>Nature Communications</i> , 2021 , 12, 6292	17.4	O
25	Quantification and targeting of elusive neurotoxic amyloid oligomers <i>Cell Reports Medicine</i> , 2022 , 3, 100636	18	0
24	Differential dynamics of Aland tau oligomer synaptic binding may suggest diverse therapeutic targets for early vs. late Alzheimerß disease. <i>Alzheimer</i> ß and Dementia, 2020 , 16, e038045	1.2	

23	Innate immune activation of the NLRP3 inflammasome pathway drives tau pathology. <i>Alzheimeri</i> s and Dementia, 2020 , 16, e039815
22	P1-122: OLIGOMERS OF A-SYNUCLEIN CROSS-SEED TAU AND EXTEND LIFETIME OF TAU TOXIC CONFORMATION 2014 , 10, P345-P345
21	P3-066: TDP-43 HYBRID OLIGOMERS IN ALZHEIMER DISEASE 2014 , 10, P651-P651
20	O1-08-06: TAU OLIGOMERS DERIVED FROM TRAUMATIC BRAIN INJURY CAUSE TOXICITY AND COGNITIVE IMPAIRMENT IN HTAU MICE 2014 , 10, P146-P146
19	P4-215: TAU OLIGOMER-SPECIFIC ANTIBODIES IN INTRAVENOUS IMMUNOGLOBULINS (IVIGS): POTENTIAL THERAPEUTIC SIGNIFICANCE IN ALZHEIMER'S DISEASE AND OTHER NEURODEGENERATIVE TAUOPATHIES 2014 , 10, P866-P867
18	P2-071: PATHOLOGICAL TAU SPECIES ABROGATE NASCENT PROTEIN PRODUCTION BY ASSOCIATING WITH THE RIBOSOMAL COMPLEX: IMPLICATIONS OF A NOVEL TAU FUNCTION AND ITS PATHOGENIC LINK TO MEMORY IMPAIRMENT 2014 , 10, P495-P496
17	O5-04-01: DIFFERENT OLIGOMERIC TAU STRAINS ARE DETECTED WITH NOVEL ANTI-TAU OLIGOMER-SPECIFIC ANTIBODIES 2014 , 10, P297-P297
16	[F4D7D3]: TAU OLIGOMERIC STRAINS IN SYNUCLEINOPATHIES 2017 , 13, P1219-P1220
15	[P4월06]: INVESTIGATING THE POTENTIAL OF NOVEL CURCUMIN DERIVATIVES IN TARGETING AND MODULATING TOXIC TAU OLIGOMERIC STRAINS 2017 , 13, P1486
14	[O1D7D3]: SYNAPTIC RESILIENCE TO TAU AND AMYLOID BETA OLIGOMERS INDUCED BY NEURAL STEM CELL-DERIVED EXOSOMES 2017 , 13, P205
13	[P4월51]: TBI AND AD: SIMILAR TAU-INDUCED NEURODEGENERATION? 2017, 13, P1503-P1504
12	O4-06-01: Specific clearance of tau oligomers by passive immunization 2012 , 8, P624-P625
11	P4-520: TAU OLIGOMERS MEDIATE AGGREGATION OF RNA-BINDING PROTEINS MUSASHI1- AND MUSASHI2-INDUCING NUCLEAR MEMBRANE ALTERATION IN ALZHEIMER® DISEASE 2019 , 15, P1513-P1513
10	O2-02-06: PROPAGATION AND DIVERSE EFFECTS OF DISEASE-SPECIFIC PRION-LIKE TAU OLIGOMERIC STRAINS 2018 , 14, P612-P612
9	P1-021: TOXICITY AND PROPAGATION OF TBI BRAIN-DERIVED SOLUBLE TAU STRAINS 2018 , 14, P273-P273
8	O2-01-03: SELECTED MICRO RNAS FROM NEURAL STEM CELL D ERIVED EXOSOMES INCREASE SYNAPTIC RESILIENCE TO TAU AND AIDLIGOMERS 2018 , 14, P609-P609
7	P3-170: INCREASED SYNAPTIC SENSITIVITY TO ALAND TAU OLIGOMERS IN THE AGING CNS AS A FUNCTION OF DECREASING NEURAL STEM CELLS 2018 , 14, P1133-P1133
6	P3-167: INHIBITION OF PHOSPHOLIPASE D1 AS A THERAPEUTIC IN AD-RELATED MEMORY DEFICITS 2018 , 14, P1131-P1132

5	P4-023: TAU IMMUNO THERAPY FOR ALPHA-SYNUCLEINOPATHY 2018 , 14, P1442-P1442	

- O5-05-06: EVALUATING TAU OLIGOMERS PASSIVE IMMUNOTHERAPY USING AGED TRANSGENIC ANIMALS OF TAUOPATHY **2018**, 14, P1657-P1657
- 3 O4-05-04: Tau Immunotherapy for Alpha-Synucleinopathy **2018**, 14, P1412-P1412
- Caspase inhibition mitigates tau cleavage and neurotoxicity in iPSC-induced neurons with the V337MIMAPTImutation.. Alzheimers and Dementia, 2021, 17 Suppl 3, e051471

 AD- and PSP-specific brain-derived tau oligomers engage synapses with different dynamic..

 Alzheimers and Dementia, 2021, 17 Suppl 3, e054394

 1.2