

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5823191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Semi-empirical and linear-scaling DFT methods to characterize duplex DNA and G-quadruplexes in the presence of interacting small molecules. Physical Chemistry Chemical Physics, 2022, 24, 11510-11519.	2.8	5
2	Influence of conventional hydrogen bonds in the intercalation of phenanthroline derivatives with DNA: The important role of the sugar and phosphate backbone. Journal of Computational Chemistry, 2022, 43, 804-821.	3.3	5
3	Computational Modelling of the Interactions Between Polyoxometalates and Biological Systems. Frontiers in Chemistry, 2022, 10, 876630.	3.6	9
4	Greener Strategy for Lupanine Purification from Lupin Bean Wastewaters Using a Molecularly Imprinted Polymer. ACS Applied Materials & Interfaces, 2022, , .	8.0	2
5	Elucidating the intercalation of methylated 1,10-phenanthroline with DNA: the important weight of the CH/H interactions and the selectivity of CH/I€ and CH/n interactions. RSC Advances, 2021, 11, 1553-1563.	3.6	9
6	Electron-Transfer-Induced Side-Chain Cleavage in Tryptophan Facilitated through Potassium-Induced Transition-State Stabilization in the Gas Phase. Journal of Physical Chemistry A, 2021, 125, 2324-2333.	2.5	3
7	Learning to Model G-Quadruplexes: Current Methods and Perspectives. Annual Review of Biophysics, 2021, 50, 209-243.	10.0	21
8	Probing the Catalytically Active Species in POM atalysed DNAâ€Model Hydrolysis**. Chemistry - A European Journal, 2021, 27, 8977-8984.	3.3	7
9	Mechanistic Insights into Promoted Hydrolysis of Phosphoester Bonds by MoO2Cl2(DMF)2. Inorganic Chemistry, 2021, 60, 11177-11191.	4.0	5
10	New Insights on the Interaction of Phenanthroline Based Ligands and Metal Complexes and Polyoxometalates with Duplex DNA and G-Quadruplexes. Molecules, 2021, 26, 4737.	3.8	21
11	Photocatalytic degradation of acetaminophen and caffeine using magnetite–hematite combined nanoparticles: kinetics and mechanisms. Environmental Science and Pollution Research, 2021, 28, 17228-17243.	5.3	15
12	From Groove Binding to Intercalation: Unravelling the Weak Interactions and Other Factors Modulating the Modes of Interaction between Methylated Phenanthroline Based Drugs and Duplex DNA. Physical Chemistry Chemical Physics, 2021, 23, 26680-26695.	2.8	4
13	Computational Studies on the Binding Preferences of Molybdenum(II) Phenanthroline Complexes with Duplex DNA. The Important Role of the Ancillary Ligands. Inorganic Chemistry, 2020, 59, 12711-12721.	4.0	15
14	Unraveling the Modulation of the Activity in Drugs Based on Methylated Phenanthroline When Intercalating between DNA Base Pairs. Journal of Chemical Information and Modeling, 2019, 59, 3989-3995.	5.4	12
15	A model of tetrahydrofuran low-temperature oxidation based on theoretically calculated rate constants. Combustion and Flame, 2018, 191, 252-269.	5.2	36
16	On the H ₂ interactions with transition metal adatoms supported on graphene: a systematic density functional study. Physical Chemistry Chemical Physics, 2018, 20, 3819-3830.	2.8	22
17	Electrochemical studies and potential anticancer activity in ferrocene derivatives. Journal of Coordination Chemistry, 2017, 70, 314-327.	2.2	22
18	Unravelling the dissociation pathways of acetic acid upon electron transfer in potassium collisions: experimental and theoretical studies. Physical Chemistry Chemical Physics, 2017, 19, 1083-1088.	2.8	5

Adrià Gil

#	Article	IF	CITATIONS
19	Effects of oxygenation on the intercalation of 1,10-phenanthroline-5,6/4,7-dione between DNA base pairs: a computational study. Physical Chemistry Chemical Physics, 2017, 19, 16638-16649.	2.8	18
20	Selfâ€Assembly of Uranyl–Peroxide Nanocapsules in Basic Peroxidic Environments. Chemistry - A European Journal, 2016, 22, 8571-8578.	3.3	32
21	Comment on "Theoretical studies on a carbonaceous molecular bearing: association thermodynamics and dual-mode rolling dynamics―by H. Isobe, K. Nakamura, S. Hitosugi, S. Sato, H. Tokoyama, H. Yamakado, K. Ohno and H. Kono, Chem. Sci., 2015, 6 , 2746. Chemical Science, 2016, 7, 2924-2928.	7.4	4
22	A theoretical study of methylation and CH/i̇́€ interactions in DNA intercalation: methylated 1,10-phenanthroline in adenine–thymine base pairs. RSC Advances, 2016, 6, 85891-85902.	3.6	23
23	Complex internal rearrangement processes triggered by electron transfer to acetic acid. Journal of Physics: Conference Series, 2015, 635, 012002.	0.4	0
24	Trends in the Hydrogen Activation and Storage by Adsorbed 3d Transition Metal Atoms onto Graphene and Nanotube Surfaces: A DFT Study and Molecular Orbital Analysis. Journal of Physical Chemistry C, 2015, 119, 5506-5522.	3.1	59
25	Synthesis and reactivity of TADDOL-based chiral Fe(<scp>ii</scp>) PNP pincer complexes-solution equilibria between l° ² P,N- and l° ³ P,N,P-bound PNP pincer ligands. Dalton Transactions, 2015, 44, 13071-13086.	3.3	13
26	How the Intercalation of Phenanthroline Affects the Structure, Energetics, and Bond Properties of DNA Base Pairs: Theoretical Study Applied to Adenine–Thymine and Guanine–Cytosine Tetramers. Journal of Chemical Theory and Computation, 2015, 11, 2714-2728.	5.3	28
27	The Energy Landscape of Uranyl–Peroxide Species. Chemistry - A European Journal, 2014, 20, 3646-3651.	3.3	22
28	Six-coordinate high-spin iron(<scp>ii</scp>) complexes with bidentate PN ligands based on 2-aminopyridine – new Fe(<scp>ii</scp>) spin crossover systems. Dalton Transactions, 2014, 43, 11152-11164.	3.3	15
29	Four- and five-coordinate high-spin iron(II) complexes bearing bidentate soft/hard SN ligands based on 2-aminopyridine. Polyhedron, 2014, 81, 45-55.	2.2	5
30	Catalysis in a Porous Molecular Capsule: Activation by Regulated Access to Sixty Metal Centers Spanning a Truncated Icosahedron. Journal of the American Chemical Society, 2012, 134, 13082-13088.	13.7	81
31	A Journey inside the U ₂₈ Nanocapsule. Chemistry - A European Journal, 2012, 18, 8340-8346.	3.3	39
32	Modulation of Lipidâ€Induced ER Stress by Fatty Acid Shape. Traffic, 2011, 12, 349-362.	2.7	72
33	Novel triazolyl derivatives for acidic release of amines. Tetrahedron, 2011, 67, 401-407.	1.9	7
34	Trends in the Adsorption of 3d Transition Metal Atoms onto Graphene and Nanotube Surfaces: A DFT Study and Molecular Orbital Analysis. Journal of Physical Chemistry C, 2010, 114, 14141-14153.	3.1	184
35	On the Origin of the Cation Templated Self-Assembly of Uranyl-Peroxide Nanoclusters. Journal of the American Chemical Society, 2010, 132, 17787-17794.	13.7	102
36	Influence of ionization on the conformational preferences of peptide models. Ramachandran surfaces of <i>N</i> â€formylâ€glycine amide and <i>N</i> â€formylâ€alanine amide radical cations. Journal of Computational Chemistry, 2009, 30, 1771-1784.	3.3	8

Adrià Gil

#	Article	IF	CITATIONS
37	An Analysis of the Different Behavior of DNA and RNA through the Study of the Mutual Relationship between Stacking and Hydrogen Bonding. Journal of Physical Chemistry B, 2009, 113, 4907-4914.	2.6	47
38	How the site of ionisation influences side-chain fragmentation in histidine radical cation. Chemical Physics Letters, 2008, 451, 276-281.	2.6	14
39	Influence of the Side Chain in the Structure and Fragmentation of Amino Acids Radical Cations. Journal of Chemical Theory and Computation, 2007, 3, 2210-2220.	5.3	41
40	CH/Ĩ€ Interactions in DNA and Proteins. A Theoretical Study. Journal of Physical Chemistry B, 2007, 111, 9372-9379.	2.6	55
41	Base-Catalyzed Anti-Markovnikov Hydroamination of Vinylarenes – Scope, Limitations and Computational Studies. European Journal of Organic Chemistry, 2007, 2007, 3311-3325.	2.4	84
42	Gas-phase proton-transport self-catalysed isomerisation of glutamine radical cation: The important role of the side-chain. Theoretical Chemistry Accounts, 2007, 118, 589-595.	1.4	9
43	Effects of ionization on N-glycylglycine peptide: Influence of intramolecular hydrogen bonds. Journal of Chemical Physics, 2006, 124, 154306.	3.0	26
44	Structure and fragmentation of glycine, alanine, serine and cysteine radical cations. A theoretical study. Computational and Theoretical Chemistry, 2005, 727, 191-197.	1.5	63
45	Unusual hydrogen bonds in [AH3–H3O]+ radical cations (A=C, Si, Ge, Sn and Pb). Chemical Physics Letters, 2004, 395, 27-32.	2.6	4
46	Unusual hydrogen bonds in [AH3–H3O]+ radical cations (A=C, Si, Ge, Sn and Pb)Single-electron hydrogen bond, proton-hydride hydrogen bond and formation of [H2AOH2]+–H2 complexes. Chemical Physics Letters, 2004, 395, 27-32.	2.6	12
47	Gas Phase Dissociation Energies of Saturated AHn·+Radical Cations and AHnNeutrals (A = Liâ^'F, Naâ^'Cl):Â Dehydrogenation, Deprotonation, and Formation of AHn-2·+ â^' H2Complexes. Journal of the American Chemical Society, 2003, 125, 7461-7469.	13.7	18