William Tieu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5822929/publications.pdf

Version: 2024-02-01

		706676	759306
28	508	14	22
papers	citations	h-index	g-index
22	22	22	600
29	29	29	688
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Toll-Like Receptors change morphine-induced antinociception, tolerance and dependence: studies using male and female TLR and Signalling gene KO mice. Brain, Behavior, and Immunity, 2022, , .	2.0	12
2	Fc gamma receptor is not required for in vivo processing of radio- and drug-conjugates of the dead tumor cell-targeting monoclonal antibody, APOMAB®. Biomedicine and Pharmacotherapy, 2022, 151, 113090.	2.5	0
3	Positron Emission Tomographic Imaging of Tumor Cell Death Using Zirconium-89-Labeled APOMAB® Following Cisplatin Chemotherapy in Lung and Ovarian Cancer Xenograft Models. Molecular Imaging and Biology, 2021, 23, 914-928.	1.3	3
4	Tumour-associated macrophages process drug and radio-conjugates of the dead tumour cell-targeting APOMAB® antibody. Journal of Controlled Release, 2020, 327, 779-787.	4.8	8
5	89Zr-pro-MMP-9 F(ab′)2 detects colitis induced intestinal and kidney fibrosis. Scientific Reports, 2020, 10, 20372.	1.6	6
6	Advanced Resistance Studies Identify Two Discrete Mechanisms in Staphylococcus aureus to Overcome Antibacterial Compounds that Target Biotin Protein Ligase. Antibiotics, 2020, 9, 165.	1.5	3
7	Improved non-invasive positron emission tomographic imaging of chemotherapy-induced tumor cell death using Zirconium-89-labeled APOMAB®. EJNMMI Radiopharmacy and Chemistry, 2020, 5, 27.	1.8	9
8	Sulfonamide-Based Inhibitors of Biotin Protein Ligase as New Antibiotic Leads. ACS Chemical Biology, 2019, 14, 1990-1997.	1.6	5
9	Exploring hydroxamic acid inhibitors of HDAC1 and HDAC2 using small molecule tools and molecular or homology modelling. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2581-2586.	1.0	2
10	Rapid and automated production of [68Ga]gallium chloride and [68Ga]Ga-DOTA-TATE on a medical cyclotron. Nuclear Medicine and Biology, 2019, 74-75, 12-18.	0.3	24
11	Analogues of desferrioxamine B (DFOB) with new properties and new functions generated using precursor-directed biosynthesis. BioMetals, 2019, 32, 395-408.	1.8	8
12	Immuno-PET of Innate Immune Markers CD11b and IL- \hat{l}^2 Detects Inflammation in Murine Colitis. Journal of Nuclear Medicine, 2019, 60, 858-863.	2.8	27
13	The chemical biology and coordination chemistry of putrebactin, avaroferrin, bisucaberin, and alcaligin. Journal of Biological Inorganic Chemistry, 2018, 23, 969-982.	1.1	16
14	Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2′ site binding inhibitor. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 480-489.	0.4	15
15	Octadentate Zirconium(IV)-Loaded Macrocycles with Varied Stoichiometry Assembled From Hydroxamic Acid Monomers using Metal-Templated Synthesis. Inorganic Chemistry, 2017, 56, 3719-3728.	1.9	24
16	Exploiting the biosynthetic machinery of Streptomyces pilosus to engineer a water-soluble zirconium(<scp>iv</scp>) chelator. Organic and Biomolecular Chemistry, 2017, 15, 5719-5730.	1.5	33
17	Reverse Biosynthesis: Generating Combinatorial Pools of Drug Leads from Enzymeâ€Mediated Fragmentation of Natural Products. ChemBioChem, 2017, 18, 368-373.	1.3	4
18	Dimeric and trimeric homo- and heteroleptic hydroxamic acid macrocycles formed using mixed-ligand Fe(III)-based metal-templated synthesis. Journal of Inorganic Biochemistry, 2017, 177, 344-351.	1.5	7

#	Article	IF	CITATION
19	New Series of BPL Inhibitors To Probe the Ribose-Binding Pocket of <i>Staphylococcus aureus</i> Biotin Protein Ligase. ACS Medicinal Chemistry Letters, 2016, 7, 1068-1072.	1.3	12
20	Improved Synthesis of Biotinol-5â \in 2-AMP: Implications for Antibacterial Discovery. ACS Medicinal Chemistry Letters, 2015, 6, 216-220.	1.3	19
21	Forward and Reverse (Retro) Iron(III) or Gallium(III) Desferrioxamine E and Ring-Expanded Analogues Prepared Using Metal-Templated Synthesis from <i>endo</i> -Hydroxamic Acid Monomers. Inorganic Chemistry, 2015, 54, 3573-3583.	1.9	15
22	Heterocyclic acyl-phosphate bioisostere-based inhibitors of Staphylococcus aureus biotin protein ligase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4689-4693.	1.0	21
23	Optimising in situ click chemistry: the screening and identification of biotin protein ligase inhibitors. Chemical Science, 2013, 4, 3533.	3.7	37
24	Structure Guided Design of Biotin Protein Ligase Inhibitors for Antibiotic Discovery. Current Topics in Medicinal Chemistry, 2013, 14, 4-20.	1.0	25
25	Selective inhibition of Biotin Protein Ligase from Staphylococcus aureus. Journal of Biological Chemistry, 2012, 287, 17823-17832.	1.6	56
26	Biotin Analogues with Antibacterial Activity Are Potent Inhibitors of Biotin Protein Ligase. ACS Medicinal Chemistry Letters, 2012, 3, 509-514.	1.3	43
27	5-Benzylidenerhodanine and 5-benzylidene-2-4-thiazolidinedione based antibacterials. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2720-2722.	1.0	34
28	New cholesterol esterase inhibitors based on rhodanine and thiazolidinedione scaffolds. Bioorganic and Medicinal Chemistry, 2011, 19, 7453-7463.	1.4	40