Bing Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/5822756/bing-li-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

6,661 81 40 97 h-index g-index citations papers 8,671 6.4 10.1 100 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
97	Biodegradation and adsorption of antibiotics in the activated sludge process. <i>Environmental Science & Environmental Science</i>	10.3	599
96	Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. <i>ISME Journal</i> , 2015 , 9, 2490-502	11.9	597
95	Continental-scale pollution of estuaries with antibiotic resistance genes. <i>Nature Microbiology</i> , 2017 , 2, 16270	26.6	530
94	Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. <i>Water Research</i> , 2014 , 62, 97-106	12.5	327
93	Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination. <i>Environmental Science & Environmental Science & </i>	10.3	271
92	Exploring variation of antibiotic resistance genes in activated sludge over a four-year period through a metagenomic approach. <i>Environmental Science & Environmental Science </i>	10.3	223
91	Antibiotic resistance genes and human bacterial pathogens: Co-occurrence, removal, and enrichment in municipal sewage sludge digesters. <i>Water Research</i> , 2016 , 91, 1-10	12.5	212
90	Occurrence, Transformation, and Fate of Antibiotics in Municipal Wastewater Treatment Plants. <i>Critical Reviews in Environmental Science and Technology</i> , 2011 , 41, 951-998	11.1	175
89	Metagenomic Assembly Reveals Hosts of Antibiotic Resistance Genes and the Shared Resistome in Pig, Chicken, and Human Feces. <i>Environmental Science & Environmental Science & </i>	10.3	168
88	Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water. <i>Water Research</i> , 2017 , 124, 259-268	12.5	167
87	Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using ultra performance liquid chromatography-tandem mass spectrometry. <i>Analytica Chimica Acta</i> , 2009 , 645, 64-72	6.6	167
86	Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. <i>Microbiome</i> , 2017 , 5, 84	16.6	161
85	ARGs-OAP: online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database. <i>Bioinformatics</i> , 2016 , 32, 2346-51	7.2	142
84	Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey. <i>Microbiome</i> , 2017 , 5, 154	16.6	141
83	Mass flows and removal of antibiotics in two municipal wastewater treatment plants. <i>Chemosphere</i> , 2011 , 83, 1284-9	8.4	141
82	Deciphering of microbial community and antibiotic resistance genes in activated sludge reactors under high selective pressure of different antibiotics. <i>Water Research</i> , 2019 , 151, 388-402	12.5	120
81	Metagenomics shows that low-energy anaerobic-aerobic treatment reactors reduce antibiotic resistance gene levels from domestic wastewater. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	115

(2012-2017)

80	Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest. <i>Science of the Total Environment</i> , 2017 , 581-582, 32-39	10.2	108
79	Comammox in drinking water systems. Water Research, 2017, 116, 332-341	12.5	106
78	Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis. <i>Water Research</i> , 2013 , 47, 4207-16	12.5	106
77	Antibiotic Resistance Genes and Correlations with Microbial Community and Metal Resistance Genes in Full-Scale Biogas Reactors As Revealed by Metagenomic Analysis. <i>Environmental Science & Mamp; Technology</i> , 2017 , 51, 4069-4080	10.3	104
76	Aerobic Degradation of Sulfadiazine by Arthrobacter spp.: Kinetics, Pathways, and Genomic Characterization. <i>Environmental Science & Environmental Sci</i>	10.3	97
75	Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR. <i>Environment International</i> , 2018 , 117, 146-153	12.9	93
74	Profile and Fate of Bacterial Pathogens in Sewage Treatment Plants Revealed by High-Throughput Metagenomic Approach. <i>Environmental Science & Environmental Science & Environm</i>	10.3	87
73	Antibiotic resistome in landfill leachate from different cities of China deciphered by metagenomic analysis. <i>Water Research</i> , 2018 , 134, 126-139	12.5	83
72	Antibiotic resistome in a large-scale healthy human gut microbiota deciphered by metagenomic and network analyses. <i>Environmental Microbiology</i> , 2018 , 20, 355-368	5.2	78
71	Gradient microfluidics enables rapid bacterial growth inhibition testing. <i>Analytical Chemistry</i> , 2014 , 86, 3131-7	7.8	67
7º	Performance of nanofiltration membrane in rejecting trace organic compounds: Experiment and model prediction. <i>Desalination</i> , 2015 , 370, 7-16	10.3	64
69	Bacteria That Make a Meal of Sulfonamide Antibiotics: Blind Spots and Emerging Opportunities. <i>Environmental Science & Environmental Science & Environ</i>	10.3	63
68	Abundant rifampin resistance genes and significant correlations of antibiotic resistance genes and plasmids in various environments revealed by metagenomic analysis. <i>Applied Microbiology and Biotechnology</i> , 2014 , 98, 5195-204	5.7	62
67	Impacts of Pb and SO Poisoning on CeO-WO/TiO-SiO SCR Catalyst. <i>Environmental Science & Environmental </i>	10.3	61
66	Different removal behaviours of multiple trace antibiotics in municipal wastewater chlorination. <i>Water Research</i> , 2013 , 47, 2970-82	12.5	60
65	New insights into antibiotic resistome in drinking water and management perspectives: A metagenomic based study of small-sized microbes. <i>Water Research</i> , 2019 , 152, 191-201	12.5	60
64	Direct rapid analysis of multiple PPCPs in municipal wastewater using ultrahigh performance liquid chromatography-tandem mass spectrometry without SPE pre-concentration. <i>Analytica Chimica Acta</i> , 2012, 738, 59-68	6.6	59
63	Enhanced anoxic bioremediation of PAHs-contaminated sediment. <i>Bioresource Technology</i> , 2012 , 104, 51-8	11	56

62	Metagenomic profiles of antibiotic resistance genes in paddy soils from South China. <i>FEMS Microbiology Ecology</i> , 2016 , 92,	4.3	51
61	An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-degrading microbial community. <i>Microbiome</i> , 2019 , 7, 16	16.6	49
60	pH significantly affects removal of trace antibiotics in chlorination of municipal wastewater. <i>Water Research</i> , 2012 , 46, 3703-13	12.5	48
59	Removal mechanisms and kinetics of trace tetracycline by two types of activated sludge treating freshwater sewage and saline sewage. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 3024-33	5.1	47
58	Deciphering the mobility and bacterial hosts of antibiotic resistance genes under antibiotic selection pressure by metagenomic assembly and binning approaches. <i>Water Research</i> , 2020 , 186, 1163	1 12 .5	44
57	Impact of pre-application treatment on municipal sludge composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest. <i>Science of the Total Environment</i> , 2017 , 587-588, 214-222	10.2	39
56	A novel microfluidic system enables visualization and analysis of antibiotic resistance gene transfer to activated sludge bacteria in biofilm. <i>Science of the Total Environment</i> , 2018 , 642, 582-590	10.2	34
55	Genomic characterization, kinetics, and pathways of sulfamethazine biodegradation by Paenarthrobacter sp. A01. <i>Environment International</i> , 2019 , 131, 104961	12.9	33
54	Performance and bacterial community of moving bed biofilm reactors with various biocarriers treating primary wastewater effluent with a low organic strength and low C/N ratio. <i>Bioresource Technology</i> , 2019 , 287, 121424	11	32
53	Real-Time Study of Rapid Spread of Antibiotic Resistance Plasmid in Biofilm Using Microfluidics. <i>Environmental Science & Environmental Science & Envi</i>	10.3	32
52	Free-living bacteria and potential bacterial pathogens in sewage treatment plants. <i>Applied Microbiology and Biotechnology</i> , 2018 , 102, 2455-2464	5.7	31
51	Engineering surface functional groups on mesoporous silica: towards a humidity-resistant hydrophobic adsorbent. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13769-13777	13	31
50	Biotransformation and adsorption of pharmaceutical and personal care products by activated sludge after correcting matrix effects. <i>Science of the Total Environment</i> , 2016 , 544, 980-6	10.2	29
49	Bacterial Community Shift and Coexisting/Coexcluding Patterns Revealed by Network Analysis in a Uranium-Contaminated Site after Bioreduction Followed by Reoxidation. <i>Applied and Environmental Microbiology</i> , 2018 , 84,	4.8	26
48	Removal of antibiotic resistance genes in four full-scale membrane bioreactors. <i>Science of the Total Environment</i> , 2019 , 653, 112-119	10.2	24
47	Metagenomic and network analyses decipher profiles and co-occurrence patterns of antibiotic resistome and bacterial taxa in the reclaimed wastewater distribution system. <i>Journal of Hazardous Materials</i> , 2020 , 400, 123170	12.8	23
46	New insights into the chlorination of sulfonamide: Smiles-type rearrangement, desulfation, and product toxicity. <i>Chemical Engineering Journal</i> , 2018 , 331, 785-793	14.7	23
45	Acid-induced unfolding mechanism of recombinant human endostatin. <i>Biochemistry</i> , 2004 , 43, 2550-7	3.2	23

(2021-2021)

44	Microbial community composition and metabolic functions in landfill leachate from different landfills of China. <i>Science of the Total Environment</i> , 2021 , 767, 144861	10.2	23
43	Single cell growth rate and morphological dynamics revealing an "opportunistic" persistence. <i>Analyst, The</i> , 2014 , 139, 3305-13	5	21
42	Acidogenic phosphorus recovery from the wastewater sludge of the membrane bioreactor systems with different iron-dosing modes. <i>Bioresource Technology</i> , 2019 , 280, 360-370	11	20
41	Impacts of human activities on distribution of sulfate-reducing prokaryotes and antibiotic resistance genes in marine coastal sediments of Hong Kong. <i>FEMS Microbiology Ecology</i> , 2016 , 92,	4.3	20
40	High-efficiency biodegradation of chloramphenicol by enriched bacterial consortia: Kinetics study and bacterial community characterization. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121344	12.8	20
39	Taxonomic relatedness and environmental pressure synergistically drive the primary succession of biofilm microbial communities in reclaimed wastewater distribution systems. <i>Environment International</i> , 2019 , 124, 25-37	12.9	18
38	Reponses of microbial community and antibiotic resistance genes to the selection pressures of ampicillin, cephalexin and chloramphenicol in activated sludge reactors. <i>Science of the Total Environment</i> , 2021 , 755, 142632	10.2	18
37	The bacterial community significantly promotes cast iron corrosion in reclaimed wastewater distribution systems. <i>Microbiome</i> , 2018 , 6, 222	16.6	18
36	An integrated membrane bioreactor system with iron-dosing and side-stream co-fermentation for enhanced nutrient removal and recovery: System performance and microbial community analysis. <i>Bioresource Technology</i> , 2018 , 260, 248-255	11	15
35	Temporal dynamics of activated sludge bacterial communities in two diversity variant full-scale sewage treatment plants. <i>Applied Microbiology and Biotechnology</i> , 2018 , 102, 9379-9388	5.7	15
34	High-Resolution Temporal and Spatial Patterns of Virome in Wastewater Treatment Systems. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	15
33	Sewage from Airplanes Exhibits High Abundance and Diversity of Antibiotic Resistance Genes. <i>Environmental Science & Environmental Science & Environme</i>	10.3	14
32	Conjugative potential of antibiotic resistance plasmids to activated sludge bacteria from wastewater treatment plants. <i>International Biodeterioration and Biodegradation</i> , 2019 , 138, 33-40	4.8	14
31	Enhanced biogas production and in situ ammonia recovery from food waste using a gas-membrane absorption anaerobic reactor. <i>Bioresource Technology</i> , 2019 , 292, 121864	11	13
30	Two-stage anaerobic digestion of food waste coupled with in situ ammonia recovery using gas membrane absorption: Performance and microbial community. <i>Bioresource Technology</i> , 2020 , 297, 1224	15 8	13
29	Transformation of Fe-P Complexes in Bioreactors and P Recovery from Sludge: Investigation by XANES Spectroscopy. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	12
28	Chloramphenicol biodegradation by enriched bacterial consortia and isolated strain Sphingomonas sp. CL5.1: The reconstruction of a novel biodegradation pathway. <i>Water Research</i> , 2020 , 187, 116397	12.5	11
27	Metagenomic analysis reveals the fate of antibiotic resistance genes in two-stage and one-stage anaerobic digestion of waste activated sludge. <i>Journal of Hazardous Materials</i> , 2021 , 406, 124595	12.8	10

26	Selective enrichment of comammox from activated sludge using antibiotics. <i>Water Research</i> , 2021 , 197, 117087	12.5	10
25	Passage and community changes of filterable bacteria during microfiltration of a surface water supply. <i>Environment International</i> , 2019 , 131, 104998	12.9	8
24	Selective Ammonium Removal from Synthetic Wastewater by Flow-Electrode Capacitive Deionization Using a Novel KTiO-Activated Carbon Mixture Electrode. <i>Environmental Science & Technology</i> , 2020 , 54, 12723-12731	10.3	7
23	Thermal Hydrolysis of Wastewater Sludge Followed by Fungal Fermentation for Organic Recovery and Hyphae Fiber Production. <i>Engineering</i> , 2021 , 7, 203-211	9.7	7
22	Comparison of chemical and biological degradation of sulfonamides: Solving the mystery of sulfonamide transformation. <i>Journal of Hazardous Materials</i> , 2021 , 127661	12.8	6
21	Distribution of antibiotic resistance genes and their association with bacteria and viruses in decentralized sewage treatment facilities. <i>Frontiers of Environmental Science and Engineering</i> , 2022 , 16, 35	5.8	5
20	Occurrence and Fate of Ultramicrobacteria in a Full-Scale Drinking Water Treatment Plant. <i>Frontiers in Microbiology</i> , 2018 , 9, 2922	5.7	5
19	Enhanced Photoelectric Conversion of Dye-sensitized Solar Cell by Addition of Inorganic Particles. <i>Chinese Journal of Chemical Physics</i> , 2007 , 20, 816-820	0.9	4
18	Recovery of high-qualitied Genomes from a deep-inland Salt Lake Using BASALT		4
17	Uranium sequestration in sediment at an iron-rich contaminated site at Oak Ridge, Tennessee via. bioreduction followed by reoxidation. <i>Journal of Environmental Sciences</i> , 2019 , 85, 156-167	6.4	3
16	Fungal hypha-derived freestanding porous carbon pad as a high-capacity electrode for water desalination in membrane capacitive deionization. <i>Chemical Engineering Journal</i> , 2021 , 433, 133781	14.7	3
15	Using general computational chemistry strategy to unravel the reactivity of emerging pollutants: An example of sulfonamide chlorination. <i>Water Research</i> , 2021 , 202, 117391	12.5	3
14	Metagenomics analysis revealing the occurrence of antibiotic resistome in salt lakes. <i>Science of the Total Environment</i> , 2021 , 790, 148262	10.2	3
13	Preparation of Fe2O3 Catalysts and their deNOx Performance: Effects of Precipitation Conditions. <i>Chemical Engineering and Technology</i> , 2018 , 41, 1019-1026	2	2
12	The occurrence of antibiotic resistance genes in the microbiota of yak, beef and dairy cattle characterized by a metagenomic approach. <i>Journal of Antibiotics</i> , 2021 , 74, 508-518	3.7	2
11	Tailoring the coordination environment of cobalt in a single-atom catalyst through phosphorus doping for enhanced activation of peroxymonosulfate and thus efficient degradation of sulfadiazine. <i>Applied Catalysis B: Environmental</i> , 2022 , 312, 121408	21.8	2
10	Occurrence and Distribution of Antibiotic Resistance Genes in Municipal Wastewater Treatment Plants with D-Type Filters. <i>Water (Switzerland)</i> , 2021 , 13, 3398	3	1
9	Estuarine salinity gradient governs sedimentary bacterial community but not antibiotic resistance gene profile. <i>Science of the Total Environment</i> , 2022 , 806, 151390	10.2	1

LIST OF PUBLICATIONS

2	Nationwide biogeography and health implications of bacterial communities in household drinking water <i>Water Research</i> , 2022 , 215, 118238	12.5	0
3	Simultaneous high-efficiency removal of sulfamethoxazole and zinc (II) from livestock and poultry breeding wastewater by a novel dual-functional bacterium, Bacillus sp. SDB4. <i>Environmental Science and Pollution Research</i> , 2021 , 1	5.1	O
4	Iron-enhanced primary sedimentation and acidogenic sludge fermentation to achieve self-sufficient organic carbon supply for enhanced nutrient removal in wastewater treatment?. <i>Resources, Conservation and Recycling,</i> 2021 , 164, 105220	11.9	О
5	Specific Denitrifying and Dissimilatory Nitrate Reduction to Ammonium Bacteria Assisted the Recovery of Anammox Community From Nitrite Inhibition <i>Frontiers in Microbiology</i> , 2021 , 12, 781156	5.7	O
6	Hydrothermal treatment and biorefinery of sewage sludge for waste reduction and production of fungal hyphae fibers and volatile fatty acids. <i>Journal of Cleaner Production</i> , 2021 , 289, 125715	10.3	1
7	New insights into thiamphenicol biodegradation mechanism by Sphingomonas sp. CL5.1 deciphered through metabolic and proteomic analysis <i>Journal of Hazardous Materials</i> , 2021 , 426, 128101	12.8	1
8	Genome-centric metagenomics provides new insights into the microbial community and metabolic potential of landfill leachate microbiota. <i>Science of the Total Environment</i> , 2021 , 816, 151635	10.2	1