List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/582264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Food waste management during the COVID-19 outbreak: a holistic climate, economic and nutritional approach. Science of the Total Environment, 2020, 742, 140524.	3.9	192

 $_{2}$ A novel group contribution method in the development of a QSAR for predicting the toxicity (Vibrio) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{134}^{2}$

3	Environmental sustainability assessment of the management of municipal solid waste incineration residues: a review of the current situation. Clean Technologies and Environmental Policy, 2015, 17, 1333-1353.	2.1	116
4	Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor. Water Research, 2007, 41, 810-818.	5.3	114
5	Enhancing waste management strategies in Latin America under a holistic environmental assessment perspective: A review for policy support. Science of the Total Environment, 2019, 689, 1255-1275.	3.9	113
6	On the estimation of potential food waste reduction to support sustainable production and consumption policies. Food Policy, 2018, 80, 24-38.	2.8	105
7	Bringing value to the chemical industry from capture, storage and use of CO2: A dynamic LCA of formic acid production. Science of the Total Environment, 2019, 663, 738-753.	3.9	95
8	Environmental and nutritional impacts of dietary changes in Spain during the COVID-19 lockdown. Science of the Total Environment, 2020, 748, 141410.	3.9	95
9	Finding an economic and environmental balance in value chains based on circular economy thinking: An eco-efficiency methodology applied to the fish canning industry. Resources, Conservation and Recycling, 2018, 133, 428-437.	5.3	81
10	Fluidized bed reactor for fluoride removal. Chemical Engineering Journal, 2005, 107, 113-117.	6.6	69
11	The Spanish Dietary Guidelines: A potential tool to reduce greenhouse gas emissions of current dietary patterns. Journal of Cleaner Production, 2019, 213, 588-598.	4.6	61
12	Combined application of Life Cycle Assessment and linear programming to evaluate food waste-to-food strategies: Seeking for answers in the nexus approach. Waste Management, 2018, 80, 186-197.	3.7	60
13	When plastic packaging should be preferred: Life cycle analysis of packages for fruit and vegetable distribution in the Spanish peninsular market. Resources, Conservation and Recycling, 2020, 155, 104666.	5.3	60
14	Life cycle assessment of fish and seafood processed products – A review of methodologies and new challenges. Science of the Total Environment, 2021, 761, 144094.	3.9	58
15	LCA of greywater management within a water circular economy restorative thinking framework. Science of the Total Environment, 2018, 621, 1047-1056.	3.9	56
16	Environmental challenges of the chlor-alkali production: Seeking answers from a life cycle approach. Science of the Total Environment, 2017, 580, 147-157.	3.9	48
17	Environmental management of bottom ash from municipal solid waste incineration based on a life cycle assessment approach. Clean Technologies and Environmental Policy, 2014, 16, 1319-1328.	2.1	45
18	Addressing challenges and opportunities of the European seafood sector under a circular economy framework. Current Opinion in Environmental Science and Health, 2020, 13, 101-106.	2.1	45

#	Article	IF	CITATIONS
19	Environmental sustainability assessment in the process industry: A case study of waste-to-energy plants in Spain. Resources, Conservation and Recycling, 2014, 93, 144-155.	5.3	43
20	Waste management under a life cycle approach as a tool for a circular economy in the canned anchovy industry. Waste Management and Research, 2016, 34, 724-733.	2.2	42
21	Fluoride Recovery in a Fluidized Bed:Â Crystallization of Calcium Fluoride on Silica Sand. Industrial & Engineering Chemistry Research, 2006, 45, 796-802.	1.8	41
22	Particle growth kinetics of calcium fluoride in a fluidized bed reactor. Chemical Engineering Science, 2007, 62, 2958-2966.	1.9	41
23	Electrochemical Oxidation of Lignosulfonate: Total Organic Carbon Oxidation Kinetics. Industrial & Engineering Chemistry Research, 2008, 47, 9848-9853.	1.8	40
24	Assessing Energy and Environmental Efficiency of the Spanish Agri-Food System Using the LCA/DEA Methodology. Energies, 2018, 11, 3395.	1.6	39
25	Production of cement in Peru: Understanding carbon-related environmental impacts and their policy implications. Resources, Conservation and Recycling, 2019, 142, 283-292.	5.3	38
26	Photovoltaic solar electrochemical oxidation (PSEO) for treatment of lignosulfonate wastewater. Journal of Chemical Technology and Biotechnology, 2010, 85, 821-830.	1.6	37
27	Transitioning from open dumpsters to landfilling in Peru: Environmental benefits and challenges from a life-cycle perspective. Journal of Cleaner Production, 2019, 229, 989-1003.	4.6	37
28	Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal. Waste Management and Research, 2014, 32, 492-499.	2.2	36
29	Modeling of particle growth: Application to water treatment in a fluidized bed reactor. Chemical Engineering Journal, 2007, 134, 66-71.	6.6	34
30	Life Cycle Assessment model for the chlor-alkali process: A comprehensive review of resources and available technologies. Sustainable Production and Consumption, 2017, 12, 44-58.	5.7	32
31	LCA-based Comparison of Two Organic Fraction Municipal Solid Waste Collection Systems in Historical Centres in Spain. Energies, 2019, 12, 1407.	1.6	31
32	Food loss and waste metrics: a proposed nutritional cost footprint linking linear programming and life cycle assessment. International Journal of Life Cycle Assessment, 2020, 25, 1197-1209.	2.2	30
33	Environmental sustainability of alternative marine propulsion technologies powered by hydrogen - a life cycle assessment approach. Science of the Total Environment, 2022, 820, 153189.	3.9	29
34	When product diversification influences life cycle impact assessment: A case study of canned anchovy. Science of the Total Environment, 2017, 581-582, 629-639.	3.9	28
35	Introducing life cycle thinking to define best available techniques for products: Application to the anchovy canning industry. Journal of Cleaner Production, 2017, 155, 139-150.	4.6	27
36	Life cycle assessment of technologies for partial dealcoholisation of wines. Sustainable Production and Consumption, 2015, 2, 29-39.	5.7	26

#	Article	IF	CITATIONS
37	Energy Embedded in Food Loss Management and in the Production of Uneaten Food: Seeking a Sustainable Pathway. Energies, 2019, 12, 767.	1.6	26
38	Towards a Water-Energy-Food (WEF) nexus index: A review of nutrient profile models as a fundamental pillar of food and nutrition security. Science of the Total Environment, 2021, 789, 147936.	3.9	26
39	TowardÂsustainable dietary patterns under a water–energy–food nexus life cycle thinking approach. Current Opinion in Environmental Science and Health, 2020, 13, 61-67.	2.1	25
40	Environmental assessment of food and beverage under a NEXUS Water-Energy-Climate approach: Application to the spirit drinks. Science of the Total Environment, 2020, 720, 137576.	3.9	25
41	Potential climate benefits of reusable packaging in food delivery services. A Chinese case study. Science of the Total Environment, 2021, 794, 148570.	3.9	25
42	Prospective CO2 emissions from energy supplying systems: photovoltaic systems and conventional grid within Spanish frame conditions. International Journal of Life Cycle Assessment, 2010, 15, 557-566.	2.2	24
43	Environmental assessment of the food packaging waste management system in Spain: Understanding the present to improve the future. Science of the Total Environment, 2020, 702, 134603.	3.9	23
44	An explorative assessment of environmental and nutritional benefits of introducing low-carbon meals to Barcelona schools. Science of the Total Environment, 2021, 756, 143879.	3.9	23
45	Environmental impact assessment of the implementation of a Deposit-Refund System for packaging waste in Spain: A solution or an additional problem?. Science of the Total Environment, 2020, 721, 137744.	3.9	22
46	An energy- and nutrient-corrected functional unit to compare LCAs of diets. Science of the Total Environment, 2019, 671, 175-179.	3.9	21
47	Incorporating linear programing and life cycle thinking into environmental sustainability decision-making: a case study on anchovy canning industry. Clean Technologies and Environmental Policy, 2017, 19, 1897-1912.	2.1	20
48	Revisiting the LCA+DEA method in fishing fleets. How should we be measuring efficiency?. Marine Policy, 2018, 91, 34-40.	1.5	20
49	Environmental Sustainability Normalization of Industrial Processes. Computer Aided Chemical Engineering, 2009, , 1105-1109.	0.3	17
50	Environmental Sustainability Assessment of an Innovative Cr (III) Passivation Process. ACS Sustainable Chemistry and Engineering, 2013, 1, 481-487.	3.2	17
51	Introducing the Green Protein Footprint method as an understandable measure of the environmental cost of anchovy consumption. Science of the Total Environment, 2018, 621, 40-53.	3.9	17
52	Nutritional data management of food losses and waste under a life cycle approach: Case study of the Spanish agri-food system. Journal of Food Composition and Analysis, 2019, 82, 103223.	1.9	17
53	Climate action and food security: Strategies to reduce GHG emissions from food loss and waste in emerging economies. Resources, Conservation and Recycling, 2021, 170, 105562.	5.3	17
54	Incorporating life cycle assessment and ecodesign tools for green chemical engineering: A case study of competences and learning outcomes assessment. Education for Chemical Engineers, 2019, 26, 89-96.	2.8	16

#	Article	IF	CITATIONS
55	Resources reduction in the fluorine industry: fluoride removal and recovery in a fluidized bed crystallizer. Clean Technologies and Environmental Policy, 2008, 10, 203-210.	2.1	15
56	Improvement of calcium fluoride crystallization by means of the reduction of fines formation. Chemical Engineering Journal, 2009, 154, 231-235.	6.6	15
57	Potential formation of PCDD/Fs in triclosan wastewater treatment: An overall toxicity assessment under a life cycle approach. Science of the Total Environment, 2020, 707, 135981.	3.9	15
58	The fishing and seafood sector in the time of COVID-19: Considerations for local and global opportunities and responses. Current Opinion in Environmental Science and Health, 2021, 23, 100286.	2.1	15
59	Regionalized Strategies for Food Loss and Waste Management in Spain under a Life Cycle Thinking Approach. Foods, 2020, 9, 1765.	1.9	13
60	Hydrogen Recovery from Waste Gas Streams to Feed (High-Temperature PEM) Fuel Cells: Environmental Performance under a Life-Cycle Thinking Approach. Applied Sciences (Switzerland), 2020, 10, 7461.	1.3	13
61	Food affordability and nutritional values within the functional unit of a food LCA. An application on regional diets in Spain Resources, Conservation and Recycling, 2020, 160, 104856.	5.3	13
62	Modeling of pervaporation processes controlled by concentration polarization. Computers and Chemical Engineering, 2007, 31, 1326-1335.	2.0	12
63	Introducing a Degrowth Approach to the Circular Economy Policies of Food Production, and Food Loss and Waste Management: Towards a Circular Bioeconomy. Sustainability, 2021, 13, 3379.	1.6	12
64	Achieving Sustainability of the Seafood Sector in the European Atlantic Area by Addressing Eco-Social Challenges: The NEPTUNUS Project. Sustainability, 2022, 14, 3054.	1.6	12
65	Multi-Objective Optimization of Nutritional, Environmental and Economic Aspects of Diets Applied to the Spanish Context. Foods, 2020, 9, 1677.	1.9	11
66	Packaging environmental impact on seafood supply chains: A review of life cycle assessment studies. Journal of Industrial Ecology, 2022, 26, 1961-1978.	2.8	11
67	Nutritional and environmental co-benefits of shifting to "Planetary Health―Spanish tapas. Journal of Cleaner Production, 2020, 271, 122561.	4.6	10
68	Contribution to closing the loop on waste materials: valorization of bottom ash from waste-to-energy plants under a life cycle approach. Journal of Material Cycles and Waste Management, 2018, 20, 1507-1515.	1.6	9
69	Connecting wastes to resources for clean technologies in the chlor-alkali industry: a life cycle approach. Clean Technologies and Environmental Policy, 2018, 20, 229-242.	2.1	9
70	Water–Energy–Food Nexus and Life Cycle Thinking: A New Approach to Environmental and Nutritional Assessment of Potato Chips. Foods, 2022, 11, 1018.	1.9	9
71	Toward Energy Savings in Campus Buildings under a Life Cycle Thinking Approach. Applied Sciences (Switzerland), 2020, 10, 7123.	1.3	7
72	Looking for Answers to Food Loss and Waste Management in Spain from a Holistic Nutritional and Economic Approach. Sustainability, 2021, 13, 125.	1.6	7

#	Article	IF	CITATIONS
73	Measuring the Vulnerability of an Energy Intensive Sector to the EU ETS under a Life Cycle Approach: The Case of the Chlor-Alkali Industry. Sustainability, 2017, 9, 837.	1.6	6
74	Combining technical, environmental, social and economic aspects in a life-cycle ecodesign methodology: An integrated approach for an electronic toy. Journal of Cleaner Production, 2021, 278, 123452.	4.6	6
75	Techno-economic and environmental assessment of methane oxidation layer measures through small-scale clean development mechanism – The case of the Seychelles. Waste Management, 2021, 124, 244-253.	3.7	5
76	Life Cycle Assessment as a Tool for Cleaner Production: Application to Aluminium Trifluoride. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	4
77	Recovery of Sulfur Dioxide Using Non-Dispersive Absorption. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	4
78	Application of the "Distance to Target―Approach to the Multiobjective Optimization of Nutritional and Economic Costs due to Food Loss and Waste. Computer Aided Chemical Engineering, 2020, , 1681-1686.	0.3	4
79	Energy Systems in the Food Supply Chain and in the Food Loss and Waste Valorization Processes: A Systematic Review. Energies, 2022, 15, 2234.	1.6	4
80	Circular Economy of Packaging and Relativity of Time in Packaging Life Cycle. Resources, Conservation and Recycling, 2022, 184, 106393.	5.3	4
81	A Novel Composite Index for the Development of Decentralized Food Production, Food Loss, and Waste Management Policies: A Water-Climate-Food Nexus Approach. Sustainability, 2021, 13, 2839.	1.6	3
82	Water Footprint Assessment of Food Loss and Waste Management Strategies in Spanish Regions. Sustainability, 2021, 13, 7538.	1.6	3
83	Climate change mitigation potential of transitioning from open dumpsters in Peru: Evaluation of mitigation strategies in critical dumpsites. Science of the Total Environment, 2022, 846, 157295.	3.9	3
84	Integration along the lifecycle of calcium fluoride in the fluorine industry. Computer Aided Chemical Engineering, 2006, , 811-816.	0.3	1
85	Life cycle modelling of a handicraft sector: the anchovy canning industry in Cantabria (Northern) Tj ETQq1 1 0.78	4314 rgB ⁻ 0.3	Г /Qverlock 1
86	Aiding eco-labelling process and its implementation: Environmental Impact Assessment Methodology to define Product Category Rules for canned anchovies. MethodsX, 2017, 4, 143-152.	0.7	1
87	Addressing decision-making in the process industry using life cycle approach coupled to Linear Programming: A case study on anchovy canning industry in Cantabria Region (Northern Spain). Computer Aided Chemical Engineering, 2017, 40, 2023-2028.	0.3	1
88	How to achieve the sustainability of the seafood sector in the European Atlantic Area?. IOP Conference Series: Materials Science and Engineering, 2021, 1196, 012010.	0.3	0
89	The combined use of life cycle assessment and data envelopment analysis to analyse the environmental efficiency of multi-unit systems. , 2022, , 137-160.		0
90	IN SEARCH OF THE DESIRED SUSTAINABLE TOURISM: A REVIEW OF LIFE CYCLE ASSESSMENT (LCA) TOURISM STUDIES. WIT Transactions on Ecology and the Environment, 2022, , .	0.0	0