
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/582261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of NASA core Flight System to Telescope Control Software for 2017 Total Solar Eclipse Observation. Publications of the Astronomical Society of the Pacific, 2022, 134, 034504.	3.1	2
2	Prominence oscillations activated by an EUV wave. Advances in Space Research, 2022, 70, 1592-1600.	2.6	5
3	Active region and flare ribbon properties associated with X-class flares and CMEs of solar cycle 24. Astrophysics and Space Science, 2022, 367, 1.	1.4	2
4	Inference of magnetic field during the Dalton minimum: Case study with recorded sunspot areas. Publication of the Astronomical Society of Japan, 2022, 74, 767-776.	2.5	1
5	Slow Magnetoacoustic Oscillations in Stellar Coronal Loops. Astrophysical Journal, 2022, 931, 63.	4.5	2
6	Oneâ€Ðay Forecasting of Global TEC Using a Novel Deep Learning Model. Space Weather, 2021, 19, 2020SW002600.	3.7	32
7	A New Method to Estimate Halo CME Mass Using Synthetic CMEs Based on a Full Ice Cream Cone Model. Astrophysical Journal, 2021, 906, 46.	4.5	2
8	Generation of Modern Satellite Data from Galileo Sunspot Drawings in 1612 by Deep Learning. Astrophysical Journal, 2021, 907, 118.	4.5	6
9	Reply to: Reliability of Al-generated magnetograms from only EUV images. Nature Astronomy, 2021, 5, 111-112.	10.1	3
10	Visual Explanation of a Deep Learning Solar Flare Forecast Model and Its Relationship to Physical Parameters. Astrophysical Journal, 2021, 910, 8.	4.5	22
11	Occurrence Rate of Radio-Loud and Halo CMEs in Solar Cycle 25: Prediction Using their Correlation with the Sunspot Number. Solar Physics, 2021, 296, 1.	2.5	5
12	Selection of Three (Extreme)Ultraviolet Channels for Solar Satellite Missions by Deep Learning. Astrophysical Journal Letters, 2021, 915, L31.	8.3	6
13	Fine Structures of an EUV Wave Event from Multi-viewpoint Observations. Astrophysical Journal, 2021, 919, 9.	4.5	3
14	Generation of He i 1083 nm Images from SDO AIA Images by Deep Learning. Astrophysical Journal, 2021, 920, 101.	4.5	4
15	Super-resolution of SDO/HMI Magnetograms Using Novel Deep Learning Methods. Astrophysical Journal Letters, 2020, 897, L32.	8.3	13
16	Time Series Analysis of Photospheric Magnetic Parameters of Flare-Quiet Versus Flaring Active Regions: Scaling Properties of Fluctuations. Solar Physics, 2020, 295, 1.	2.5	2
17	Generation of High-resolution Solar Pseudo-magnetograms from Ca ii K Images by Deep Learning. Astrophysical Journal Letters, 2020, 895, L16.	8.3	24
18	De-noising SDO/HMI Solar Magnetograms by Image Translation Method Based on Deep Learning. Astrophysical Journal Letters, 2020, 891, L4.	8.3	14

#	Article	IF	CITATIONS
19	Forecast of Major Solar X-Ray Flare Flux Profiles Using Novel Deep Learning Models. Astrophysical Journal Letters, 2020, 890, L5.	8.3	12
20	Improvement of IRI Global TEC Maps by Deep Learning Based on Conditional Generative Adversarial Networks. Space Weather, 2020, 18, e2019SW002411.	3.7	20
21	Relationships between Interplanetary Coronal Mass Ejection Characteristics and Geoeffectiveness in the Declining Phase of Solar Cycles 23 and 24. Solar Physics, 2020, 295, 1.	2.5	5
22	Higher Radial Harmonics of Sausage Oscillations in Coronal Loops. Astrophysical Journal, 2020, 893, 62.	4.5	4
23	Accelerating and Supersonic Density Fluctuations in Coronal Hole Plumes: Signature of Nascent Solar Winds. Astrophysical Journal Letters, 2020, 900, L19.	8.3	7
24	Solar Coronal Magnetic Field Extrapolation from Synchronic Data with AI-generated Farside. Astrophysical Journal Letters, 2020, 903, L25.	8.3	23
25	Nonequilibrium Ionization Effects on Solar EUV and X-Ray Imaging Observations. Astrophysical Journal, 2019, 879, 111.	4.5	11
26	Generation of Solar UV and EUV Images from SDO/HMI Magnetograms by Deep Learning. Astrophysical Journal Letters, 2019, 884, L23.	8.3	29
27	A New Type of Jet in a Polar Limb of the Solar Coronal Hole. Astrophysical Journal Letters, 2019, 884, L38.	8.3	5
28	Ensemble Forecasting of Major Solar Flares with Short-, Mid-, and Long-term Active Region Properties. Astrophysical Journal, 2019, 885, 35.	4.5	4
29	Parametric Study of ICME Properties Related to Space Weather Disturbances via a Series of Three-Dimensional MHD Simulations. Solar Physics, 2019, 294, 1.	2.5	7
30	On the Relation between Flare and CME during GLE-SEP and Non-GLE-SEP Events. Astrophysical Journal, 2019, 883, 91.	4.5	10
31	Distinction in the Interplanetary Characteristics of Accelerated and Decelerated CMEs/Shocks. Earth, Moon and Planets, 2019, 122, 73-82.	0.6	0
32	Seismological Determination of the Alfvén Speed and Plasma Beta in Solar Photospheric Bright Points. Astrophysical Journal Letters, 2019, 871, L14.	8.3	2
33	Interplanetary Coronal Mass Ejections During Solar Cycles 23 and 24: Sun–Earth Propagation Characteristics and Consequences at the Near-Earth Region. Solar Physics, 2019, 294, 1.	2.5	16
34	Solar farside magnetograms from deep learning analysis of STEREO/EUVI data. Nature Astronomy, 2019, 3, 397-400.	10.1	64
35	Properties of Slow Magnetoacoustic Oscillations of Solar Coronal Loops by Multi-instrumental Observations. Astrophysical Journal Letters, 2019, 874, L1.	8.3	34
36	Onset Mechanism of M6.5 Solar Flare Observed in Active Region 12371. Astrophysical Journal, 2019, 887, 263.	4.5	10

#	Article	IF	CITATIONS
37	Quasi-periodic pulsations in a solar flare with an unusual phase shift. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5499-5507.	4.4	13
38	Properties and relationship between solar eruptive flares and Coronal Mass Ejections during rising phase of Solar Cycles 23 and 24. Advances in Space Research, 2018, 61, 540-551.	2.6	7
39	Three-dimensional Oscillations of 21 Halo Coronal Mass Ejections Using Multi-spacecraft Data. Astrophysical Journal, 2018, 868, 18.	4.5	2
40	Flare Productivity of Major Flaring Solar Active Regions: A Time-Series Study of Photospheric Magnetic Properties. Solar Physics, 2018, 293, 1.	2.5	7
41	Application of the Deep Convolutional Neural Network to the Forecast of Solar Flare Occurrence Using Full-disk Solar Magnetograms. Astrophysical Journal, 2018, 869, 91.	4.5	55
42	A two-fluid modeling of kinetic Alfvén wave turbulence. Astrophysics and Space Science, 2018, 363, 1.	1.4	0
43	Sausage oscillations in a plasma cylinder with a surface current. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 175, 49-55.	1.6	23
44	Two-Dimensional Solar Wind Speeds from 6 to 26 Solar Radii in Solar Cycle 24 by Using Fourier Filtering. Physical Review Letters, 2018, 121, 075101.	7.8	21
45	Determination of the Alfvén Speed and Plasma-beta Using the Seismology of Sunspot Umbra. Astrophysical Journal Letters, 2017, 837, L11.	8.3	29
46	Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections. Astrophysical Journal, 2017, 839, 82.	4.5	10
47	Solar and interplanetary activities of isolated and non-isolated coronal mass ejections. Indian Journal of Physics, 2017, 91, 711-720.	1.8	О
48	Application of decisionâ€making to a solar flare forecast in the costâ€loss ratio situation. Space Weather, 2017, 15, 704-712.	3.7	7
49	Which Bow Shock Theory, Gasdynamic or Magnetohydrodynamic, Better Explains CME Stand-off Distance Ratios from LASCO-C2 Observations ?. Astrophysical Journal, 2017, 838, 70.	4.5	7
50	FORMATION AND ERUPTION OF A FLUX ROPE FROM THE SIGMOID ACTIVE REGION NOAA 11719 AND ASSOCIATED M6.5 FLARE: A MULTI-WAVELENGTH STUDY. Astrophysical Journal, 2017, 834, 42.	4.5	35
51	Effect of Local Thermal Equilibrium Misbalance on Long-wavelength Slow Magnetoacoustic Waves. Astrophysical Journal, 2017, 849, 62.	4.5	40
52	Two Distinct Types of CME-flare Relationships Based on SOHO and STEREO Observations. Astrophysical Journal, 2017, 845, 169.	4.5	6
53	Dependence of the Peak Fluxes of Solar Energetic Particles on CME 3D Parameters from STEREO and SOHO. Astrophysical Journal, 2017, 844, 17.	4.5	3
54	Heating of an Erupting Prominence Associated with a Solar Coronal Mass Ejection on 2012 January 27. Astrophysical Journal, 2017, 844, 3.	4.5	18

#	Article	IF	CITATIONS
55	Onset of a Large Ejective Solar Eruption from a Typical Coronal-jet-base Field Configuration. Astrophysical Journal, 2017, 845, 26.	4.5	24
56	Three-minute Sunspot Oscillations Driven by Magnetic Reconnection in a Light Bridge. Astrophysical Journal Letters, 2017, 850, L33.	8.3	4
57	Observational test of empirical magnetopause location models using geosynchronous satellite data. Journal of Geophysical Research: Space Physics, 2016, 121, 10,994.	2.4	3
58	REVISED MODEL OF THE STEADY-STATE SOLAR WIND HALO ELECTRON VELOCITY DISTRIBUTION FUNCTION. Astrophysical Journal, 2016, 826, 204.	4.5	12
59	DEPENDENCE OF OCCURRENCE RATES OF SOLAR FLARES AND CORONAL MASS EJECTIONS ON THE SOLAR CYCLE PHASE AND THE IMPORTANCE OF LARGE-SCALE CONNECTIVITY. Astrophysical Journal, 2016, 831, 131.	4.5	4
60	DENSITY PERTURBATION BY ALFVÉN WAVES IN MAGNETO-PLASMA. Astrophysical Journal, 2016, 833, 280.	4.5	0
61	Development of Daily Maximum Flare-Flux Forecast Models for Strong Solar Flares. Solar Physics, 2016, 291, 897-909.	2.5	15
62	SUPRATHERMAL SOLAR WIND ELECTRONS AND LANGMUIR TURBULENCE. Astrophysical Journal, 2016, 828, 60.	4.5	17
63	Coronal electron density distributions estimated from CMEs, DH type II radio bursts, and polarized brightness measurements. Journal of Geophysical Research: Space Physics, 2016, 121, 2853-2865.	2.4	6
64	INTERACTION OF TWO FILAMENT CHANNELS OF DIFFERENT CHIRALITIES. Astrophysical Journal, 2016, 825, 123.	4.5	11
65	Relationships Between Interplanetary Coronal Mass Ejection Characteristics and Geoeffectiveness in the Rising Phase of Solar Cycles 23 and 24. Solar Physics, 2016, 291, 1547-1560.	2.5	13
66	COMPARISON BETWEEN 2D AND 3D PARAMETERS OF 306 FRONT-SIDE HALO CMEs FROM 2009 TO 2013. Astrophysical Journal, 2016, 821, 95.	4.5	21
67	EFFECT OF A RADIATION COOLING AND HEATING FUNCTION ON STANDING LONGITUDINAL OSCILLATIONS IN CORONAL LOOPS. Astrophysical Journal, 2016, 824, 8.	4.5	37
68	A Study of Heliospheric Modulation and Periodicities of Galactic Cosmic Rays During Cycle 24. Solar Physics, 2016, 291, 581-602.	2.5	37
69	SMALL-SCALE SOLAR WIND TURBULENCE DUE TO NONLINEAR ALFVÉN WAVES. Astrophysical Journal, 2015, 812, 69.	4.5	2
70	THE ROLE OF ERUPTING SIGMOID IN TRIGGERING A FLARE WITH PARALLEL AND LARGE-SCALE QUASI-CIRCULAR RIBBONS. Astrophysical Journal, 2015, 812, 50.	4.5	57
71	Are 3â€D coronal mass ejection parameters from singleâ€view observations consistent with multiview ones?. Journal of Geophysical Research: Space Physics, 2015, 120, 10,237.	2.4	17
72	Numerical study of density cavitations by inertial Alfvén waves. Astrophysics and Space Science, 2015, 358, 1.	1.4	2

#	Article	IF	CITATIONS
73	Study of multi-periodic coronal pulsations during an X-class solar flare. Advances in Space Research, 2015, 56, 2769-2778.	2.6	18
74	Short-term periodicities in interplanetary, geomagnetic and solar phenomena during solar cycle 24. Astrophysics and Space Science, 2015, 356, 7-18.	1.4	36
75	MASS AND ENERGY OF ERUPTING SOLAR PLASMA OBSERVED WITH THE X-RAY TELESCOPE ON <i>HINODE </i> Astrophysical Journal, 2015, 798, 106.	4.5	7
76	Forecast of a Daily Halo CME Occurrence Probability Depending on Class and Area Change of the Associated Sunspot. Solar Physics, 2015, 290, 1661-1669.	2.5	7
77	Arrival time of solar eruptive CMEs associated with ICMEs of magnetic cloud and ejecta. Astrophysics and Space Science, 2015, 357, 1.	1.4	1
78	Empirical Relationship Between CME Parameters and Geo-effectiveness of Halo CMEs in the Rising Phase of Solar Cycle 24 (2011 – 2013). Solar Physics, 2015, 290, 1417-1427.	2.5	15
79	RADIAL AND AZIMUTHAL OSCILLATIONS OF HALO CORONAL MASS EJECTIONS IN THE SUN. Astrophysical Journal Letters, 2015, 803, L7.	8.3	11
80	STUDY OF SOLAR ENERGETIC PARTICLE ASSOCIATIONS WITH CORONAL EXTREME-ULTRAVIOLET WAVES. Astrophysical Journal, 2015, 808, 3.	4.5	31
81	What flare and CME parameters control the occurrence of solar proton events?. Journal of Geophysical Research: Space Physics, 2014, 119, 9456-9463.	2.4	13
82	AN INTERPRETATION OF GLE71 CONCURRENT CME-DRIVEN SHOCK WAVE. Astrophysical Journal, Supplement Series, 2014, 213, 24.	7.7	6
83	ARE THE FAINT STRUCTURES AHEAD OF SOLAR CORONAL MASS EJECTIONS REAL SIGNATURES OF DRIVEN SHOCKS?. Astrophysical Journal Letters, 2014, 796, L16.	8.3	11
84	Determination of coronal magnetic fields from 10 to 26R ⊙ using the density compression ratios of CME-driven shocks. Astrophysics and Space Science, 2014, 351, 67-73.	1.4	1
85	Dependence of Geomagnetic Storms on Their Associated Halo CME Parameters. Solar Physics, 2014, 289, 2233-2245.	2.5	18
86	Twoâ€step forecast of geomagnetic storm using coronal mass ejection and solar wind condition. Space Weather, 2014, 12, 246-256.	3.7	18
87	Comparison of interplanetary CME arrival times and solar wind parameters based on the WSAâ€ENLIL model with three cone types and observations. Journal of Geophysical Research: Space Physics, 2014, 119, 7120-7127.	2.4	6
88	Forecast of solar proton flux profiles for wellâ€connected events. Journal of Geophysical Research: Space Physics, 2014, 119, 9383-9394.	2.4	8
89	FORECAST OF SOLAR PROTON EVENTS WITH NOAA SCALES BASED ON SOLAR X-RAY FLARE DATA USING NEURAL NETWORK. Journal of the Korean Astronomical Society, 2014, 47, 209-214.	1.5	1
90	Comparison of Cone Model Parameters for Halo Coronal Mass Ejections. Solar Physics, 2013, 288, 313-329.	2.5	14

#	Article	IF	CITATIONS
91	Propagation of Interplanetary Coronal Mass Ejections: The Drag-Based Model. Solar Physics, 2013, 285, 295-315.	2.5	257
92	Propagation Characteristics of CMEs Associated with Magnetic Clouds and Ejecta. Solar Physics, 2013, 284, 77-88.	2.5	30
93	A statistical study on the stand-off distances of interplanetary coronal mass ejections. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 105-106, 181-190.	1.6	6
94	Comparison of neural network and support vector machine methods for <i>Kp</i> forecasting. Journal of Geophysical Research: Space Physics, 2013, 118, 5109-5117.	2.4	29
95	THE SOURCE REGIONS OF SOLAR ENERGETIC PARTICLES DETECTED BY WIDELY SEPARATED SPACECRAFT. Astrophysical Journal, 2013, 779, 184.	4.5	47
96	MAGNETIC FIELD STRENGTH IN THE UPPER SOLAR CORONA USING WHITE-LIGHT SHOCK STRUCTURES SURROUNDING CORONAL MASS EJECTIONS. Astrophysical Journal, 2012, 746, 118.	4.5	36
97	AN INTERPRETATION OF THE POSSIBLE MECHANISMS OF TWO GROUND-LEVEL ENHANCEMENT EVENTS. Astrophysical Journal, 2012, 758, 119.	4.5	23
98	Solar Flare Occurrence Rate and Probability in Terms of the Sunspot Classification Supplemented with Sunspot Area and Its Changes. Solar Physics, 2012, 281, 639-650.	2.5	54
99	Solar and interplanetary parameters of CMEs with and without type II radio bursts. Advances in Space Research, 2012, 50, 516-525.	2.6	9
100	Comparison of <i>Dst</i> forecast models for intense geomagnetic storms. Journal of Geophysical Research, 2012, 117, .	3.3	25
101	Dependence of solar proton events on their associated activities: Coronal mass ejection parameters. Journal of Geophysical Research, 2012, 117, .	3.3	30
102	APPLICATION OF SUPPORT VECTOR MACHINE TO THE PREDICTION OF GEO-EFFECTIVE HALO CMES. Journal of the Korean Astronomical Society, 2012, 45, 31-38.	1.5	7
103	ON THE POSSIBLE MECHANISMS OF TWO GROUND-LEVEL ENHANCEMENT EVENTS. Astrophysical Journal, 2011, 743, 190.	4.5	13
104	Correlation between CME and Flare Parameters (with and without Type II Bursts). Solar Physics, 2011, 270, 273-284.	2.5	6
105	QUASI-PERIODIC OSCILLATIONS IN LASCO CORONAL MASS EJECTION SPEEDS. Astrophysical Journal, 2010, 708, 450-455.	4.5	15
106	An empirical model for prediction of geomagnetic storms using initially observed CME parameters at the Sun. Journal of Geophysical Research, 2010, 115, .	3.3	27
107	Statistical comparison of interplanetary conditions causing intense geomagnetic storms (Dst ≤՞'100) Tj ETC	2q1_1_0.78 	34314 rgBT /0
108	An empirical relationship between coronal mass ejection initial speed and solar wind dynamic pressure. Journal of Geophysical Research, 2010, 115, .	3.3	9

#	Article	IF	CITATIONS
109	Dependence of solar proton events on their associated activities: Flare parameters. Journal of Geophysical Research, 2010, 115, .	3.3	19
110	Type II Radio Bursts with High and Low Starting Frequencies. Solar Physics, 2009, 254, 297-310.	2.5	17
111	Statistical Analysis of the Relationships among Coronal Holes, Corotating Interaction Regions, and Geomagnetic Storms. Solar Physics, 2009, 254, 311-323.	2.5	19
112	Radial Evolution of Well-Observed Slow CMEs inÂtheÂDistance Range 2 – 30 R ⊙. Solar Physics, 20 351-361.	09,257, 2.5	7
113	MAGNETIC RECONNECTION DURING THE TWO-PHASE EVOLUTION OF A SOLAR ERUPTIVE FLARE. Astrophysical Journal, 2009, 706, 1438-1450.	4.5	46
114	Reply to comment by N. Gopalswamy and H. Xie on "Prediction of the 1â€AU arrival times of CMEâ€associated interplanetary shocks: Evaluation of an empirical interplanetary shock propagation model― Journal of Geophysical Research, 2008, 113, .	3.3	7
115	Investigation of CME dynamics in the LASCO field of view. Astronomy and Astrophysics, 2008, 484, 511-516.	5.1	3
116	Comparison of SOHO UVCS and MLSO MK4 coronameter densities. Astronomy and Astrophysics, 2008, 486, 1009-1013.	5.1	7
117	Low coronal observations of metric type II associated CMEs by MLSO coronameters. Astronomy and Astrophysics, 2008, 491, 873-882.	5.1	60
118	ESTIMATION OF SPICULE MAGNETIC FIELD USING OBSERVED MHD WAVES BY THE HINODE SOT. Journal of the Korean Astronomical Society, 2008, 41, 173-180.	1.5	23
119	Hinode SP Vector Magnetogram of AR10930 and Its Cross-Comparison with MDI. Publication of the Astronomical Society of Japan, 2007, 59, S625-S630.	2.5	24
120	A study of CMEÂand typeÂll shock kinematics based on coronal density measurement. Astronomy and Astrophysics, 2007, 461, 1121-1125.	5.1	54
121	Prediction of the 1-AU arrival times of CME-associated interplanetary shocks: Evaluation of an empirical interplanetary shock propagation model. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	35
122	Statistical significance of association between whistlerâ€mode chorus enhancements and enhanced convection periods during highâ€speed streams. Journal of Geophysical Research, 2007, 112, .	3.3	26
123	Coronal mass ejection geoeffectiveness depending on field orientation and interplanetary coronal mass ejection classification. Journal of Geophysical Research, 2006, 111, .	3.3	14
124	Repetitive substorms caused by Alfvénic waves of the interplanetary magnetic field during high-speed solar wind streams. Journal of Geophysical Research, 2006, 111, .	3.3	29
125	An Overview of Existing Algorithms for Resolving the 180° Ambiguity in Vector Magnetic Fields: Quantitative Tests with Synthetic Data. Solar Physics, 2006, 237, 267-296.	2.5	240
126	X-ray plasma ejections associated with coronal typeÂll shocks. Astronomy and Astrophysics, 2006, 458, 653-659.	5.1	5

#	Article	IF	CITATIONS
127	Multiple Type II Solar Radio Bursts. Solar Physics, 2005, 232, 87-103.	2.5	19
128	Examination of type II origin with SOHO/LASCO observations. Journal of Geophysical Research, 2005, 110, .	3.3	37
129	Pi2 pulsations observed from the Polar satellite outside the plasmapause. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	22
130	New extrapolation method for coronal mass ejection onset time estimation. Journal of Geophysical Research, 2005, 110, .	3.3	2
131	Pi2 pulsations in a small and strongly asymmetric plasmasphere. Journal of Geophysical Research, 2005, 110, .	3.3	7
132	Forecast evaluation of the coronal mass ejection (CME) geoeffectiveness using halo CMEs from 1997 to 2003. Journal of Geophysical Research, 2005, 110, .	3.3	64
133	On the kinematic evolution of flare-associated cmes. Solar Physics, 2003, 215, 185-201.	2.5	49
134	Statistical Characteristics of CMEs and Flares Associated with Solar Type II Radio Bursts. Solar Physics, 2003, 217, 301-317.	2.5	26
135	A statistical comparison of interplanetary shock and CME propagation models. Journal of Geophysical Research, 2003, 108, .	3.3	46
136	RELATIONSHIP BETWEEN CME KINEMATICS AND FLARE STRENGTH. Journal of the Korean Astronomical Society, 2003, 36, 61-66.	1.5	39
137	A revised shock time of arrival (STOA) model for interplanetary shock propagation: STOA-2. Geophysical Research Letters, 2002, 29, 28-1-28-4.	4.0	34
138	Active-Region Monitoring and Flare Forecasting – I. Data Processing and First Results. Solar Physics, 2002, 209, 171-183.	2.5	158
139	Flaring time interval distribution and spatial correlation of major X-ray solar flares. Journal of Geophysical Research, 2001, 106, 29951-29961.	3.3	51