Cuijuan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5822178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simultaneously Enhancing the Thermal Stability, Mechanical Modulus, and Electrochemical Performance of Solid Polymer Electrolytes by Incorporating 2D Sheets. Advanced Energy Materials, 2018, 8, 1800866.	19.5	221
2	Incorporating Ionic Paths into 3D Conducting Scaffolds for High Volumetric and Areal Capacity, High Rate Lithiumâ€Metal Anodes. Advanced Materials, 2018, 30, e1801328.	21.0	134
3	Membranes in non-aqueous redox flow battery: A review. Journal of Power Sources, 2021, 500, 229983.	7.8	70
4	Water oxidation catalysis: an amorphous quaternary Ba-Sr-Co-Fe oxide as a promising electrocatalyst for the oxygen-evolution reaction. Chemical Communications, 2016, 52, 1513-1516.	4.1	63
5	A high-performance all-iron non-aqueous redox flow battery. Journal of Power Sources, 2020, 445, 227331.	7.8	59
6	Enhanced hydrothermal stability of a Cu-SSZ-13 catalyst for the selective reduction of NOx by NH3 synthesized with SAPO-34 micro-crystallite as seed. Journal of Catalysis, 2019, 377, 218-223.	6.2	56
7	Mapping the performance of amorphous ternary metal oxide water oxidation catalysts containing aluminium. Journal of Materials Chemistry A, 2015, 3, 756-761.	10.3	48
8	Enhancing the performance of an all-organic non-aqueous redox flow battery. Journal of Power Sources, 2019, 443, 227283.	7.8	38
9	Amorphous Nickel Oxides Supported on Carbon Nanosheets as High-Performance Catalysts for Electrochemical Synthesis of Hydrogen Peroxide. ACS Catalysis, 2022, 12, 5911-5920.	11.2	37
10	Amorphous cobalt-cerium binary metal oxides as high performance electrocatalyst for oxygen evolution reaction. Journal of Catalysis, 2020, 384, 14-21.	6.2	35
11	A new composite cathode for intermediate temperature solid oxide fuel cells with zirconia-based electrolytes. Journal of Power Sources, 2017, 342, 419-426.	7.8	28
12	An all organic redox flow battery with high cell voltage. RSC Advances, 2019, 9, 13128-13132.	3.6	27
13	Enhanced hydrothermal stability of Cu-SSZ-13 by compositing with Cu-SAPO-34 in selective catalytic reduction of nitrogen oxides with ammonia. Catalysis Today, 2020, 355, 627-634.	4.4	26
14	Ferrocene/anthraquinone based bi-redox molecule for symmetric nonaqueous redox flow battery. Journal of Power Sources, 2020, 480, 229132.	7.8	26
15	A dynamic solid oxide fuel cell empowered by the built-in iron-bed solid fuel. Energy and Environmental Science, 2016, 9, 3746-3753.	30.8	22
16	MOF-derived iron as an active energy storage material for intermediate-temperature solid oxide iron–air redox batteries. Chemical Communications, 2017, 53, 10564-10567.	4.1	22
17	New insights into the early stages of thermal oxidation of carbon/carbon composites using electrochemical methods. Carbon, 2016, 108, 178-189.	10.3	21
18	An Intermediate-Temperature Solid Oxide Iron–Air Redox Battery Operated on O ^{2–} -Chemistry and Loaded with Pd-Catalyzed Iron-Based Energy Storage Material. ACS Energy Letters, 2016, 1, 1206-1211.	17.4	21

Cuijuan Zhang

#	Article	IF	CITATIONS
19	A high-rate nonaqueous organic redox flow battery. Journal of Power Sources, 2021, 495, 229819.	7.8	21
20	Two-dimensional metal-organic framework nanosheets-modified porous separator for non-aqueous redox flow batteries. Journal of Membrane Science, 2020, 612, 118463.	8.2	20
21	A Comprehensive Review on the Development of Solidâ€State Metal–Air Batteries Operated on Oxideâ€Ion Chemistry. Advanced Energy Materials, 2021, 11, 2000630.	19.5	20
22	Promotion of the performance of Cu-SSZ-13 for selective catalytic reduction of NOx by ammonia in the presence of SO2 during high temperature hydrothermal aging. Journal of Catalysis, 2021, 394, 228-235.	6.2	20
23	A novel cathode material BaCe0.4Sm0.2Co0.4O3â^î [^] for proton conducting solid oxide fuel cell. Electrochemistry Communications, 2011, 13, 1070-1073.	4.7	18
24	Water Oxidation Catalysis: Tuning the Electrocatalytic Properties of Amorphous Lanthanum Cobaltite through Calcium Doping. ACS Catalysis, 2017, 7, 6385-6391.	11.2	18
25	Water Oxidation Catalysis: Survey of Amorphous Binary Metal Oxide Films Containing Lanthanum and Late 3d Transition Metals. European Journal of Inorganic Chemistry, 2014, 2014, 660-664.	2.0	17
26	Computational Analysis of Performance Limiting Factors for the New Solid Oxide Iron-air Redox Battery Operated at 550 °C. Electrochimica Acta, 2015, 178, 190-198.	5.2	17
27	Ferrocene/Phthalimide Ionic Bipolar Redox-Active Molecule for Symmetric Nonaqueous Redox Flow Batteries. ACS Applied Energy Materials, 2021, 4, 8045-8051.	5.1	17
28	Two-dimensional vermiculite nanosheets-modified porous membrane for non-aqueous redox flow batteries. Journal of Power Sources, 2021, 500, 229987.	7.8	15
29	NO direct decomposition: progress, challenges and opportunities. Catalysis Science and Technology, 2021, 11, 374-391.	4.1	14
30	Highly selective metal-organic framework-based (MOF-5) separator for non-aqueous redox flow battery. Chemical Engineering Journal, 2022, 433, 133564.	12.7	14
31	Anthraquinone-based electroactive ionic species as stable multi-redox anode active materials for high-performance nonaqueous redox flow batteries. Journal of Materials Chemistry A, 2021, 9, 22056-22063.	10.3	12
32	Liquid Nitrobenzene-Based Anolyte Materials for High-Current and -Energy-Density Nonaqueous Redox Flow Batteries. ACS Applied Materials & Interfaces, 2021, 13, 35579-35584.	8.0	11
33	Proton-mediated energy storage in intermediate-temperature solid-oxide metal–air batteries. Journal of Materials Chemistry A, 2018, 6, 20659-20662.	10.3	8
34	High Performance Catalysts BaCoO 3 â^'CeO 2 Prepared by the Oneâ€Pot Method for NO Direct Decomposition. ChemCatChem, 2020, 12, 4297-4303.	3.7	8
35	Molecular engineering the naphthalimide compounds as High-Capacity anolyte for nonaqueous redox flow batteries. Chemical Engineering Journal, 2022, 439, 135766.	12.7	8
36	Crumpled graphene-encapsulated sulfur for lithium–sulfur batteries. RSC Advances, 2018, 8, 18502-18507.	3.6	6

Cuijuan Zhang

#	Article	IF	CITATIONS
37	Tailoring the BaCoO3-CeO2 catalyst for NO direct decomposition: Factors determining catalytic activity. Journal of Catalysis, 2021, 400, 301-309.	6.2	6
38	Lithium-Metal Anodes: Incorporating Ionic Paths into 3D Conducting Scaffolds for High Volumetric and Areal Capacity, High Rate Lithium-Metal Anodes (Adv. Mater. 33/2018). Advanced Materials, 2018, 30, 1870248.	21.0	5
39	Molecular engineering redox-active organic materials for nonaqueous redox flow battery. Current Opinion in Chemical Engineering, 2022, 37, 100851.	7.8	4
40	Amorphous Nickel Oxide as Efficient Electrocatalyst for Urea Oxidation Reaction. Journal of the Electrochemical Society, 2021, 168, 076502.	2.9	3
41	Coupling Tetraalkylammonium and Ethylene Glycol Ether Side Chain To Enable Highly Soluble Anthraquinone-Based Ionic Species for Nonaqueous Redox Flow Battery. ACS Applied Materials & Interfaces, 2022, 14, 17369-17377.	8.0	3
42	Porous poly(vinylidene fluoride) (PVDF) membrane with 2D vermiculite nanosheets modification for non-aqueous redox flow batteries. Journal of Membrane Science, 2022, 651, 120468.	8.2	3
43	Highly efficient NO direct decomposition over BaMnO3-CeO2 composite catalysts. Applied Catalysis A: General, 2022, 634, 118543.	4.3	2
44	Tuning the Catalytic Activity of Complex Metal Oxides Prepared by a One-Pot Method for NO Direct Decomposition. Industrial & Engineering Chemistry Research, 2021, 60, 9399-9408.	3.7	1
45	Solid-oxide metal–air redox batteries. , 2020, , 217-250.		0