Letricia Barbosa-Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5821615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study on the chemical behaviour of Bisphenol S during the in vitro gastrointestinal digestion and its bioaccessibility. Food Chemistry, 2022, 367, 130758.	4.2	9
2	Almond Hull as a Functional Ingredient of Bread: Effects on Physico-Chemical, Nutritional, and Consumer Acceptability Properties. Foods, 2022, 11, 777.	1.9	6
3	Development of active films utilizing antioxidant compounds obtained from tomato and lemon by-products for use in food packaging. Food Control, 2022, 140, 109128.	2.8	22
4	Comparison of Analytical Methods for the Rapid Determination of Melatonin in Food Supplements. Food Analytical Methods, 2021, 14, 734-741.	1.3	7
5	Industrial Fruits By-Products and Their Antioxidant Profile: Can They Be Exploited for Industrial Food Applications?. Foods, 2021, 10, 272.	1.9	13
6	Nanoemulsions for Edible Coatings: Stabilizing and Bioactive Properties. , 2021, , 183-198.		0
7	Protective Effect of Cocoa Bean Shell against Intestinal Damage: An Example of Byproduct Valorization. Antioxidants, 2021, 10, 280.	2.2	14
8	Green tea extract and nanocellulose embedded into polylactic acid film: Properties and efficiency on retarding the lipid oxidation of a model fatty food. Food Packaging and Shelf Life, 2021, 27, 100609.	3.3	29
9	Development and Characterization of Inhaled Ethanol as a Novel Pharmacological Strategy Currently Evaluated in a Phase II Clinical Trial for Early-Stage SARS-CoV-2 Infection. Pharmaceutics, 2021, 13, 342.	2.0	8
10	Evaluation of Cocoa Bean Shell Antimicrobial Activity: A Tentative Assay Using a Metabolomic Approach for Active Compound Identification. Planta Medica, 2021, 87, 841-849.	0.7	4
11	Presence of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in Food Contact Materials (FCM) and Its Migration to Food. Foods, 2021, 10, 1443.	1.9	48
12	Characterization and Classification of Cocoa Bean Shells from Different Regions of Venezuela Using HPLC-PDA-MS/MS and Spectrophotometric Techniques Coupled to Chemometric Analysis. Foods, 2021, 10, 1791.	1.9	9
13	Chemometric Classification of Cocoa Bean Shells Based on Their Polyphenolic Profile Determined by RP-HPLC-PDA Analysis and Spectrophotometric Assays. Antioxidants, 2021, 10, 1533.	2.2	10
14	Phenolic Profile of Fruit Industry Byproducts Determined by LC–DAD–MS/MS. Proceedings (mdpi), 2021, 70, 31.	0.2	0
15	Food applications of <i>Irvingia gabonensis</i> (Aubry-Lecomte ex. O'Rorke) Baill., the â€~bush mango': A review. Critical Reviews in Food Science and Nutrition, 2020, 60, 2446-2459.	5.4	22
16	Dehydration of protein lactoferrin-glycomacropeptide nanohydrogels. Food Hydrocolloids, 2020, 101, 105550.	5.6	16
17	Polyphenolic and Methylxanthine Bioaccessibility of Cocoa Bean Shell Functional Biscuits: Metabolomics Approach and Intestinal Permeability through Caco-2 Cell Models. Antioxidants, 2020, 9, 1164.	2.2	14
18	Physico-Chemical Characterization of Tunisian Canary Palm (Phoenix canariensis Hort. Ex Chabaud) Dates and Evaluation of Their Addition in Biscuits, Foods, 2020, 9, 695.	1.9	7

#	Article	IF	CITATIONS
19	In Vitro Bioaccessibility and Functional Properties of Phenolic Compounds from Enriched Beverages Based on Cocoa Bean Shell. Foods, 2020, 9, 715.	1.9	25
20	Physical Properties and Consumer Evaluation of Cocoa Bean Shell-Functionalized Biscuits Adapted for Diabetic Consumers by the Replacement of Sucrose with Tagatose. Foods, 2020, 9, 814.	1.9	18
21	Cocoa Bean Shell—A By-Product with Nutritional Properties and Biofunctional Potential. Nutrients, 2020, 12, 1123.	1.7	90
22	Analytical dataset on volatile compounds of cocoa bean shells from different cultivars and geographical origins. Data in Brief, 2019, 25, 104268.	0.5	13
23	Determination of Xanthohumol in Hops, Food Supplements and Beers by HPLC. Foods, 2019, 8, 435.	1.9	16
24	A Dietary Mixture of Oxysterols Induces In Vitro Intestinal Inflammation through TLR2/4 Activation: The Protective Effect of Cocoa Bean Shells. Antioxidants, 2019, 8, 151.	2.2	24
25	Effects of Particle Size and Extraction Methods on Cocoa Bean Shell Functional Beverage. Nutrients, 2019, 11, 867.	1.7	49
26	Assessment of volatile fingerprint by HS-SPME/GC-qMS and E-nose for the classification of cocoa bean shells using chemometrics. Food Research International, 2019, 123, 684-696.	2.9	52
27	Traceability of Functional Volatile Compounds Generated on Inoculated Cocoa Fermentation and Its Potential Health Benefits. Nutrients, 2019, 11, 884.	1.7	27
28	Coffee silverskin as nutraceutical ingredient in yogurt: its effect on functional properties and its bioaccessibility. Journal of the Science of Food and Agriculture, 2019, 99, 4267-4275.	1.7	40
29	Authentication of cocoa bean shells by near- and mid-infrared spectroscopy and inductively coupled plasma-optical emission spectroscopy. Food Chemistry, 2019, 292, 47-57.	4.2	31
30	Characterization of Polyphenolic Compounds Extracted from Different Varieties of Almond Hulls (Prunus dulcis L.). Antioxidants, 2019, 8, 647.	2.2	38
31	Coffee Supplements. , 2019, , 177-185.		0
32	Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food and Bioprocess Technology, 2018, 11, 818-835.	2.6	103
33	Nanocoating with extract of tarbush to retard Fuji apples senescence. Postharvest Biology and Technology, 2017, 134, 67-75.	2.9	16
34	Functional Foods. , 2017, , 165-200.		3
35	A multifunctional extract from corn steep liquor: antioxidant and surfactant activities. Food and Function, 2016, 7, 3724-3732.	2.1	39
36	Molecularly imprinted hydrogels as functional active packaging materials. Food Chemistry, 2016, 190, 487-494.	4.2	39

#	Article	IF	CITATIONS
37	Selective removal of ATP degradation products from food matrices II: Rapid screening of hypoxanthine and inosine by molecularly imprinted matrix solid-phase dispersion for evaluation of fish freshness. Talanta, 2015, 135, 58-66.	2.9	19
38	Heterogenous Lignocellulosic Composites as Bio-Based Adsorbents for Wastewater Dye Removal: a Kinetic Comparison. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	21
39	Optimization of liquid–liquid extraction of biosurfactants from corn steep liquor. Bioprocess and Biosystems Engineering, 2015, 38, 1629-1637.	1.7	54
40	Optimization of extraction conditions and fatty acid characterization of <i>Lactobacillus pentosus</i> cellâ€bound biosurfactant/bioemulsifier. Journal of the Science of Food and Agriculture, 2015, 95, 313-320.	1.7	68
41	Brewery waste as a potential source of phenolic compounds: Optimisation of the extraction process and evaluation of antioxidant and antimicrobial activities. Food Chemistry, 2014, 145, 191-197.	4.2	67
42	Removal of pigments from aqueous solution by a calcium alginate–grape marc biopolymer: A kinetic study. Carbohydrate Polymers, 2014, 101, 954-960.	5.1	26
43	Development of new active packaging films coated with natural phenolic compounds to improve the oxidative stability of beef. Meat Science, 2014, 97, 249-254.	2.7	96
44	Capacity of biological soil crusts colonized by the lichen Diploschistes to metabolize simple phenols. Plant and Soil, 2014, 385, 229-240.	1.8	6
45	Development of new active packaging films containing bioactive nanocomposites. Innovative Food Science and Emerging Technologies, 2014, 26, 310-318.	2.7	76
46	Study of the Surfactant Properties of Aqueous Stream from the Corn Milling Industry. Journal of Agricultural and Food Chemistry, 2014, 62, 5451-5457.	2.4	43
47	Phenolic profile and antioxidant properties of a crude extract obtained from a brewery waste stream. Food Research International, 2013, 51, 663-669.	2.9	44
48	Development of antioxidant active films containing tocopherols to extend theÂshelf life of fish. Food Control, 2013, 31, 236-243.	2.8	100
49	Fractionation and Purification of Bioactive Compounds Obtained from a Brewery Waste Stream. BioMed Research International, 2013, 2013, 1-11.	0.9	52