Xin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5820803/publications.pdf

Version: 2024-02-01

		126708	1	61609	
88	3,244	33		54	
papers	citations	h-index		g-index	
					ı
89	89	89		2295	
0,7	0,7	0)		2273	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	High Risk for Invasive Meningococcal Disease Among Patients Receiving Eculizumab (Soliris) Despite Receipt of Meningococcal Vaccine. Morbidity and Mortality Weekly Report, 2017, 66, 734-737.	9.0	227
2	Sequence Diversity of the Factor H Binding Protein Vaccine Candidate in Epidemiologically Relevant Strains of Serogroup B <i>Neisseria meningitidis</i> . Journal of Infectious Diseases, 2009, 200, 379-389.	1.9	180
3	Clinical Validation of Multiplex Real-Time PCR Assays for Detection of Bacterial Meningitis Pathogens. Journal of Clinical Microbiology, 2012, 50, 702-708.	1.8	116
4	First Use of a Serogroup B Meningococcal Vaccine in the US in Response to a University Outbreak. Pediatrics, 2015, 135, 798-804.	1.0	109
5	Current Epidemiology and Trends in Invasive Haemophilus influenzae Disease—United States, 2009–2015. Clinical Infectious Diseases, 2018, 67, 881-889.	2.9	106
6	Current Epidemiology and Trends in Meningococcal Diseaseâ€"United States, 1996â€"2015. Clinical Infectious Diseases, 2018, 66, 1276-1281.	2.9	101
7	Detection of bacterial pathogens in Mongolia meningitis surveillance with a new real-time PCR assay to detect Haemophilus influenzae. International Journal of Medical Microbiology, 2011, 301, 303-309.	1.5	98
8	Prevalence and genetic diversity of candidate vaccine antigens among invasive Neisseria meningitidis isolates in the United States. Vaccine, 2011, 29, 4739-4744.	1.7	98
9	Population Structure and Capsular Switching of Invasive <i>Neisseria meningitidis</i> Isolates in the Pre–Meningococcal Conjugate Vaccine Era—United States, 2000–2005. Journal of Infectious Diseases, 2010, 201, 1208-1224.	1.9	92
10	sodC-Based Real-Time PCR for Detection of Neisseria meningitidis. PLoS ONE, 2011, 6, e19361.	1.1	88
11	Meningococcal Carriage Evaluation in Response to a Serogroup B Meningococcal Disease Outbreak and Mass Vaccination Campaign at a College—Rhode Island, 2015–2016. Clinical Infectious Diseases, 2017, 64, 1115-1122.	2.9	85
12	Emergence of a new <i>Neisseria meningitidis</i> clonal complex 11 lineage 11.2 clade as an effective urogenital pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4237-4242.	3.3	79
13	Emergence of epidemic Neisseria meningitidis serogroup C in Niger, 2015: an analysis of national surveillance data. Lancet Infectious Diseases, The, 2016, 16, 1288-1294.	4.6	71
14	Meningococcal Carriage Following a Vaccination Campaign With MenB-4C and MenB-FHbp in Response to a University Serogroup B Meningococcal Disease Outbreakâ€"Oregon, 2015â€"2016. Journal of Infectious Diseases, 2017, 216, 1130-1140.	1.9	67
15	Prolonged University Outbreak of Meningococcal Disease Associated With a Serogroup B Strain Rarely Seen in the United States. Clinical Infectious Diseases, 2013, 57, 344-348.	2.9	63
16	Expansion of a urethritis-associated Neisseria meningitidis clade in the United States with concurrent acquisition of N. gonorrhoeae alleles. BMC Genomics, 2018, 19, 176.	1.2	61
17	Haemophilus haemolyticus Isolates Causing Clinical Disease. Journal of Clinical Microbiology, 2012, 50, 2462-2465.	1.8	57
18	Development of Real-Time PCR Methods for the Detection of Bacterial Meningitis Pathogens without DNA Extraction. PLoS ONE, 2016, 11, e0147765.	1.1	56

#	Article	IF	Citations
19	Serogroup B Meningococcal Disease Outbreak and Carriage Evaluation at a College - Rhode Island, 2015. Morbidity and Mortality Weekly Report, 2015, 64, 606-7.	9.0	56
20	Increased Risk for Meningococcal Disease Among Men Who Have Sex With Men in the United States, 2012–2015. Clinical Infectious Diseases, 2017, 65, 756-763.	2.9	55
21	Bacterial Meningitis Epidemiology in Five Countries in the Meningitis Belt of Sub-Saharan Africa, 2015–2017. Journal of Infectious Diseases, 2019, 220, S165-S174.	1.9	54
22	Whole-Genome Characterization of Epidemic <i>Neisseria meningitidis</i> Serogroup C and Resurgence of Serogroup W, Niger, 2015. Emerging Infectious Diseases, 2016, 22, 1762-1768.	2.0	53
23	<i>Notes from the Field</i> : Increase in <i>Neisseria meningitidis–</i> Associated Urethritis Among Men at Two Sentinel Clinics — Columbus, Ohio, and Oakland County, Michigan, 2015. Morbidity and Mortality Weekly Report, 2016, 65, 550-552.	9.0	53
24	Predicting the Susceptibility of Meningococcal Serogroup B Isolates to Bactericidal Antibodies Elicited by Bivalent rLP2086, a Novel Prophylactic Vaccine. MBio, 2018, 9, .	1.8	53
25	Large Cluster of Neisseria meningitidis Urethritis in Columbus, Ohio, 2015. Clinical Infectious Diseases, 2017, 65, 92-99.	2.9	52
26	Genomic Epidemiology of Hypervirulent Serogroup W, ST-11 Neisseria meningitidis. EBioMedicine, 2015, 2, 1447-1455.	2.7	51
27	Population-Based Surveillance of Neisseria meningitidis Antimicrobial Resistance in the United States. Open Forum Infectious Diseases, 2015, 2, ofv117.	0.4	47
28	Molecular Characterization of Invasive Meningococcal Isolates from Countries in the African Meningitis Belt before Introduction of a Serogroup A Conjugate Vaccine. PLoS ONE, 2012, 7, e46019.	1.1	46
29	Preclinical evidence for the potential of a bivalent fHBP vaccine to prevent <i>Neisseria meningitidis</i> Serogroup C Disease. Hum Vaccin, 2011, 7, 68-74.	2.4	43
30	Meningococcal carriage among a university student population – United States, 2015. Vaccine, 2018, 36, 29-35.	1.7	40
31	Invasive Haemophilus influenzae Disease in Adults ≥65 Years, United States, 2011. Open Forum Infectious Diseases, 2014, 1, ofu044.	0.4	37
32	A Multi-country Evaluation of Neisseria meningitidis Serogroup B Factor H–Binding Proteins and Implications for Vaccine Coverage in Different Age Groups. Pediatric Infectious Disease Journal, 2013, 32, 1096-1101.	1.1	36
33	Detection of Ciprofloxacin-Resistant, <i>l²</i> -Lactamaseâ€"Producing <i>Neisseria meningitidis</i> Serogroup Y Isolates â€" United States, 2019â€"2020. Morbidity and Mortality Weekly Report, 2020, 69, 735-739.	9.0	36
34	Evaluation of New Biomarker Genes for Differentiating Haemophilus influenzae from Haemophilus haemolyticus. Journal of Clinical Microbiology, 2012, 50, 1422-1424.	1.8	33
35	MenAfriNet: A Network Supporting Case-Based Meningitis Surveillance and Vaccine Evaluation in the Meningitis Belt of Africa. Journal of Infectious Diseases, 2019, 220, S148-S154.	1.9	33
36	Meningococcal Disease Among College-Aged Young Adults: 2014–2016. Pediatrics, 2019, 143, .	1.0	33

#	Article	IF	CITATIONS
37	Changes in the Population Structure of Invasive (i) Neisseria meningitidis (i) in the United States After Quadrivalent Meningococcal Conjugate Vaccine Licensure. Journal of Infectious Diseases, 2015, 211, 1887-1894.	1.9	30
38	Genomic Investigation Reveals Highly Conserved, Mosaic, Recombination Events Associated with Capsular Switching among Invasive <i>Neisseria meningitidis</i> Serogroup W Sequence Type (ST)-11 Strains. Genome Biology and Evolution, 2016, 8, 2065-2075.	1.1	30
39	The Establishment and Diversification of Epidemic-Associated Serogroup W Meningococcus in the African Meningitis Belt, 1994 to 2012. MSphere, 2016, 1 , .	1.3	29
40	Epidemiology of Meningococcal Disease Outbreaks in the United States, 2009–2013. Clinical Infectious Diseases, 2019, 68, 580-585.	2.9	29
41	Genomic characterization of Haemophilus influenzae: a focus on the capsule locus. BMC Genomics, 2019, 20, 733.	1.2	29
42	Genetic Similarity of Gonococcal Homologs to Meningococcal Outer Membrane Proteins of Serogroup B Vaccine. MBio, 2019, 10, .	1.8	29
43	Comparison of Phenotypic and Genotypic Approaches to Capsule Typing of Neisseria meningitidis by Use of Invasive and Carriage Isolate Collections. Journal of Clinical Microbiology, 2016, 54, 25-34.	1.8	27
44	Epidemiology of Invasive <i>Haemophilus influenzae</i> Serotype a Diseaseâ€"United States, 2008â€"2017. Clinical Infectious Diseases, 2021, 73, e371-e379.	2.9	27
45	Neisseria genomics: current status and future perspectives. Pathogens and Disease, 2017, 75, .	0.8	23
46	Genome Sequences for Five Strains of the Emerging Pathogen Haemophilus haemolyticus. Journal of Bacteriology, 2011, 193, 5879-5880.	1.0	20
47	Whole genome sequencing for investigations of meningococcal outbreaks in the United States: a retrospective analysis. Scientific Reports, 2018, 8, 15803.	1.6	20
48	Outbreak of Neisseria meningitidis serogroup C outside the meningitis beltâ€"Liberia, 2017: an epidemiological and laboratory investigation. Lancet Infectious Diseases, The, 2018, 18, 1360-1367.	4.6	20
49	Population structure of invasive Neisseria meningitidis in the United States, 2011–15. Journal of Infection, 2018, 77, 427-434.	1.7	19
50	The Strengthening of Laboratory Systems in the Meningitis Belt to Improve Meningitis Surveillance, 2008–2018: A Partners' Perspective. Journal of Infectious Diseases, 2019, 220, S175-S181.	1.9	19
51	Full Molecular Typing of Neisseria meningitidis Directly from Clinical Specimens for Outbreak Investigation. Journal of Clinical Microbiology, 2020, 58, .	1.8	19
52	Whole-Genome Sequencing for Characterization of Capsule Locus and Prediction of Serogroup of Invasive Meningococcal Isolates. Journal of Clinical Microbiology, 2019, 57, .	1.8	18
53	Phylogenetic relationships and regional spread of meningococcal strains in the meningitis belt, 2011–2016. EBioMedicine, 2019, 41, 488-496.	2.7	17
54	Acquisition of Ciprofloxacin Resistance Among an Expanding Clade of β-Lactamase–Positive, Serogroup Y <i>Neisseria meningitidis</i> in the United States. Clinical Infectious Diseases, 2021, 73, 1185-1193.	2.9	17

#	Article	IF	CITATIONS
55	Toward a Global Genomic Epidemiology of Meningococcal Disease. Journal of Infectious Diseases, 2019, 220, S266-S273.	1.9	16
56	Next generation rapid diagnostic tests for meningitis diagnosis. Journal of Infection, 2020, 81, 712-718.	1.7	16
57	Heteroresistance to the model antimicrobial peptide polymyxin B in the emerging <i>Neisseria meningitidis</i> lineage 11.2 urethritis clade: mutations in the <i>pilMNOPQ</i> operon. Molecular Microbiology, 2019, 111, 254-268.	1.2	15
58	Triplex real-time PCR assay for the detection of Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae directly from clinical specimens without extraction of DNA. Diagnostic Microbiology and Infectious Disease, 2019, 93, 188-190.	0.8	15
59	Molecular diagnostic assays for the detection of common bacterial meningitis pathogens: A narrative review. EBioMedicine, 2021, 65, 103274.	2.7	15
60	A five-year field assessment of rapid diagnostic tests for meningococcal meningitis in Niger by using the combination of conventional and real-time PCR assays as a gold standard. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2014, 108, 6-12.	0.7	14
61	BMScan: using whole genome similarity to rapidly and accurately identify bacterial meningitis causing species. BMC Infectious Diseases, 2018, 18, 405.	1.3	13
62	Comparative Genomic Analysis of Haemophilus haemolyticus and Nontypeable Haemophilus influenzae and a New Testing Scheme for Their Discrimination. Journal of Clinical Microbiology, 2016, 54, 3010-3017.	1.8	12
63	A New Sequence Type of Neisseria meningitidis Serogroup C Associated With a 2016 Meningitis Outbreak in Mali. Journal of Infectious Diseases, 2019, 220, S190-S197.	1.9	12
64	Meningococcal carriage 7 years after introduction of a serogroup A meningococcal conjugate vaccine in Burkina Faso: results from four cross-sectional carriage surveys. Lancet Infectious Diseases, The, 2020, 20, 1418-1425.	4.6	12
65	Antimicrobial Susceptibility Survey of Invasive <i>Neisseria meningitidis</i> , United States 2012–2016. Journal of Infectious Diseases, 2022, 225, 1871-1875.	1.9	12
66	Meningococcus genome informatics platform: a system for analyzing multilocus sequence typing data. Nucleic Acids Research, 2009, 37, W606-W611.	6.5	11
67	Epidemiology of Bacterial Meningitis in the Nine Years Since Meningococcal Serogroup A Conjugate Vaccine Introduction, Niger, 2010–2018. Journal of Infectious Diseases, 2019, 220, S206-S215.	1.9	11
68	Molecular characterization of invasive meningococcal isolates in Burkina Faso as the relative importance of serogroups X and W increases, 2008–2012. BMC Infectious Diseases, 2018, 18, 337.	1.3	8
69	Distribution of Neisseria meningitidis serogroup b (NmB) vaccine antigens in meningococcal disease causing isolates in the United States during 2009–2014, prior to NmB vaccine licensure. Journal of Infection, 2019, 79, 426-434.	1.7	8
70	Oropharyngeal microbiome of a college population following a meningococcal disease outbreak. Scientific Reports, 2020, 10, 632.	1.6	7
71	Antimicrobial Susceptibility Survey of Invasive Haemophilus influenzae in the United States in 2016. Microbiology Spectrum, 2022, 10, e0257921.	1.2	7
72	Transmission Dynamics and Microevolution of Neisseria meningitidis During Carriage and Invasive Disease in High School Students in Georgia and Maryland, 2006–2007. Journal of Infectious Diseases, 2020, 223, 2038-2047.	1.9	6

#	Article	IF	CITATIONS
73	Using Neisseria meningitidis genomic diversity to inform outbreak strain identification. PLoS Pathogens, 2021, 17, e1009586.	2.1	6
74	Enhancing Meningococcal Genomic Surveillance in the Meningitis Belt Using High-Resolution Culture-Free Whole-Genome Sequencing. Journal of Infectious Diseases, 2022, 226, 729-737.	1.9	6
75	Triplex Real-Time PCR without DNA Extraction for the Monitoring of Meningococcal Disease. Diagnostics, 2018, 8, 58.	1.3	4
76	Distinct evolutionary patterns of Neisseria meningitidis serogroup B disease outbreaks at two universities in the USA. Microbial Genomics, 2018, 4, .	1.0	4
77	Web-Based Genome Analysis of Bacterial Meningitis Pathogens for Public Health Applications Using the Bacterial Meningitis Genomic Analysis Platform (BMGAP). Frontiers in Genetics, 2020, 11, 601870.	1.1	4
78	Insights on Population Structure and Within-Host Genetic Changes among Meningococcal Carriage Isolates from U.S. Universities. MSphere, 2020, 5, .	1.3	3
79	Genetic Diversity of Meningococcal Serogroup B Vaccine Antigens among Carriage Isolates Collected from Students at Three Universities in the United States, 2015–2016. MBio, 2021, 12, .	1.8	3
80	Risk Factors for Invasive Meningococcal Disease Belonging to a Novel Urethritis Clade of <i>Neisseria meningitidis</i> A€"United States, 2013â€"2017. Open Forum Infectious Diseases, 2022, 9, ofac035.	0.4	3
81	Direct Real-Time PCR for the Detection and Serotyping of Haemophilus influenzae without DNA Extraction. Journal of Clinical Microbiology, 2022, 60, e0211121.	1.8	3
82	Phylogenetic Structure and Comparative Genomics of Multi-National Invasive Haemophilus influenzae Serotype a Isolates. Frontiers in Microbiology, 2022, 13, 856884.	1.5	3
83	Infection With the US <i>Neisseria meningitidis</i> Urethritis Clade Does Not Lower Future Risk of Urethral Gonorrhea. Clinical Infectious Diseases, 2022, 74, 2159-2165.	2.9	2
84	Evaluation of Urethrotropic-Clade Meningococcal Infection by Urine Metagenomic Shotgun Sequencing. Journal of Clinical Microbiology, 2022, 60, JCM0173221.	1.8	2
85	Genomic Insights on Variation Underlying Capsule Expression in Meningococcal Carriage Isolates From University Students, United States, 2015–2016. Frontiers in Microbiology, 2022, 13, 815044.	1.5	2
86	Draft Genome Sequences for a Diverse Set of Seven <i>Haemophilus</i> and <i>Aggregatibacter</i> Species. Microbiology Resource Announcements, 2018, 7, .	0.3	1
87	Neisseria meningitidis Serogroup C Clonal Complex 10217 Outbreak in West Kpendjal Prefecture, Togo 2019. Microbiology Spectrum, 2022, , e0192321.	1.2	1
88	Molecular insights into meningococcal carriage isolates from Burkina Faso 7 years after introduction of a serogroup A meningococcal conjugate vaccine. Microbial Genomics, 2020, 6, .	1.0	0